Home
Class 14
MATHS
If 3(cot^(2)theta-cos^(2)theta)=1-sin^(2...

If `3(cot^(2)theta-cos^(2)theta)=1-sin^(2)theta,0^(@)ltthetalt90^(@),` then the `theta` equal to

A

A) `30^(@)`

B

B) `60^(@)`

C

C) `45^(@)`

D

D) `15^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3(\cot^2 \theta - \cos^2 \theta) = 1 - \sin^2 \theta\) for \(0^\circ < \theta < 90^\circ\), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 3(\cot^2 \theta - \cos^2 \theta) = 1 - \sin^2 \theta \] ### Step 2: Use the Pythagorean identity Recall the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] From this, we can express \(1 - \sin^2 \theta\) as: \[ 1 - \sin^2 \theta = \cos^2 \theta \] ### Step 3: Substitute into the equation Substituting \(1 - \sin^2 \theta\) into the equation gives: \[ 3(\cot^2 \theta - \cos^2 \theta) = \cos^2 \theta \] ### Step 4: Simplify the equation Now, we can simplify the equation: \[ 3\cot^2 \theta - 3\cos^2 \theta = \cos^2 \theta \] Rearranging terms yields: \[ 3\cot^2 \theta = 4\cos^2 \theta \] ### Step 5: Express \(\cot^2 \theta\) in terms of \(\sin^2 \theta\) Recall that: \[ \cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} \] Substituting this into the equation gives: \[ 3\left(\frac{\cos^2 \theta}{\sin^2 \theta}\right) = 4\cos^2 \theta \] ### Step 6: Cross-multiply to eliminate the fraction Cross-multiplying results in: \[ 3\cos^2 \theta = 4\cos^2 \theta \sin^2 \theta \] ### Step 7: Rearranging the equation Rearranging gives: \[ 4\cos^2 \theta \sin^2 \theta - 3\cos^2 \theta = 0 \] Factoring out \(\cos^2 \theta\) gives: \[ \cos^2 \theta (4\sin^2 \theta - 3) = 0 \] ### Step 8: Solve for \(\theta\) Since \(\cos^2 \theta = 0\) would imply \(\theta = 90^\circ\), which is not in our interval, we set: \[ 4\sin^2 \theta - 3 = 0 \] Solving for \(\sin^2 \theta\) gives: \[ \sin^2 \theta = \frac{3}{4} \] Taking the square root: \[ \sin \theta = \frac{\sqrt{3}}{2} \] ### Step 9: Find the angle \(\theta\) The angle \(\theta\) for which \(\sin \theta = \frac{\sqrt{3}}{2}\) in the interval \(0^\circ < \theta < 90^\circ\) is: \[ \theta = 60^\circ \] ### Final Answer Thus, the value of \(\theta\) is: \[ \theta = 60^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (cos^(2)theta)/(cot^(2)theta-cos^(2)theta)=3and0^(@)ltthetalt90^(@) , then find the value of theta .

If 3+cos^(2)theta=3(cot^2theta+sin^2theta).0^(@)ltthetalt90^(@) , then what is the value of (costheta+2sintheta) ?

(cos^(2)theta-cot^(2)theta+1)/(sin^(2)theta+tan^(2)theta-1)=cot^(2)theta

Solve : 2sin^(2)theta=(1)/(2),0^(@)ltthetalt90^(@) .

If (cos^(2) theta)/(cot^(2) theta - cos^(2) theta) = 3 and 0^(@) lt theta lt 90^(@) , then the value of theta is

If l cos^2 theta + m sin^2 theta =(cos^2 theta (cosec^2theta +1))/(cosec^2 theta -1), 0^@ lt theta lt 90^@ , then tan theta is equal to

If 4-2sin^(2)theta-5costheta=0,0^(@)ltthetalt90^(@) , then the value of (sintheta+tantheta) is :

If sin5theta=cos20^(@)(0^(@)ltthetalt90^(@)) then value of theta is