Home
Class 14
MATHS
The value of (5 (1)/(9) - 7 (7)/(8)div9 ...

The value of `(5 (1)/(9) - 7 (7)/(8)div9 (9)/(20)) xx (9)/(11)- (5(1)/(4) div (3)/(7) " of " (1)/(4) xx (2)/(7)) div 4 (2)/(3) + 1 (3)/(4) ` is
(a)`2(1)/(4)`
(b)`2(1)/(3)`
(c)`3(1)/(4)`
(d)`4(1)/(2)`

A

`2(1)/(4)`

B

`2(1)/(3)`

C

`3(1)/(4)`

D

`4(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression step by step, we will follow the order of operations (BODMAS/BIDMAS) and convert mixed fractions into improper fractions where necessary. ### Step 1: Convert Mixed Fractions to Improper Fractions The given expression is: \[ (5 \frac{1}{9} - 7 \frac{7}{8} \div 9 \frac{9}{20}) \times \frac{9}{11} - (5 \frac{1}{4} \div \frac{3}{7} \text{ of } \frac{1}{4} \times \frac{2}{7}) \div 4 \frac{2}{3} + 1 \frac{3}{4} \] Convert mixed fractions: - \(5 \frac{1}{9} = \frac{46}{9}\) - \(7 \frac{7}{8} = \frac{63}{8}\) - \(9 \frac{9}{20} = \frac{189}{20}\) - \(5 \frac{1}{4} = \frac{21}{4}\) - \(4 \frac{2}{3} = \frac{14}{3}\) - \(1 \frac{3}{4} = \frac{7}{4}\) Now, rewrite the expression: \[ \left(\frac{46}{9} - \frac{63}{8} \div \frac{189}{20}\right) \times \frac{9}{11} - \left(\frac{21}{4} \div \frac{3}{7} \text{ of } \frac{1}{4} \times \frac{2}{7}\right) \div \frac{14}{3} + \frac{7}{4} \] ### Step 2: Solve the Division Inside the Parentheses First, calculate \(\frac{63}{8} \div \frac{189}{20}\): \[ \frac{63}{8} \div \frac{189}{20} = \frac{63}{8} \times \frac{20}{189} = \frac{63 \times 20}{8 \times 189} \] Simplifying: - \(63 = 3 \times 21\) - \(189 = 3 \times 63\) Thus: \[ \frac{63 \times 20}{8 \times 189} = \frac{20}{8} = \frac{5}{2} \] Now substitute back: \[ \left(\frac{46}{9} - \frac{5}{2}\right) \times \frac{9}{11} - \left(\frac{21}{4} \div \frac{3}{7} \text{ of } \frac{1}{4} \times \frac{2}{7}\right) \div \frac{14}{3} + \frac{7}{4} \] ### Step 3: Calculate \(\frac{46}{9} - \frac{5}{2}\) Finding a common denominator (18): \[ \frac{46}{9} = \frac{92}{18}, \quad \frac{5}{2} = \frac{45}{18} \] Thus: \[ \frac{92}{18} - \frac{45}{18} = \frac{47}{18} \] ### Step 4: Multiply by \(\frac{9}{11}\) \[ \frac{47}{18} \times \frac{9}{11} = \frac{423}{198} \] ### Step 5: Solve the Second Parenthesis Calculate \(\frac{21}{4} \div \frac{3}{7}\): \[ \frac{21}{4} \div \frac{3}{7} = \frac{21}{4} \times \frac{7}{3} = \frac{147}{12} \] Now calculate the "of" operation: \[ \frac{147}{12} \text{ of } \frac{1}{4} \times \frac{2}{7} = \frac{147}{12} \times \frac{1}{4} \times \frac{2}{7} = \frac{147 \times 2}{12 \times 28} = \frac{294}{336} = \frac{49}{56} \] ### Step 6: Divide by \(\frac{14}{3}\) \[ \frac{49}{56} \div \frac{14}{3} = \frac{49}{56} \times \frac{3}{14} = \frac{147}{784} \] ### Step 7: Combine All Parts Now we have: \[ \frac{423}{198} - \frac{147}{784} + \frac{7}{4} \] ### Step 8: Find a Common Denominator and Combine The least common multiple of the denominators (198, 784, 4) is 1560. Convert each fraction: - \(\frac{423}{198} = \frac{423 \times 8}{198 \times 8} = \frac{3384}{1560}\) - \(\frac{147}{784} = \frac{147 \times 2}{784 \times 2} = \frac{294}{1560}\) - \(\frac{7}{4} = \frac{7 \times 390}{4 \times 390} = \frac{2730}{1560}\) Combine: \[ \frac{3384 - 294 + 2730}{1560} = \frac{4820}{1560} \] ### Step 9: Simplify the Result Dividing both numerator and denominator by 20: \[ \frac{241}{78} \] Convert to mixed fraction: \[ 3 \frac{7}{78} \] ### Final Answer The value of the expression is: \[ \text{(c) } 3 \frac{1}{4} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SSC SELECTION POST 9 NOV 2020 SHIFT 3 GRADUATION LEVEL

    SSC SELECTION POST|Exercise QUANTITATIVE APTITUDE |25 Videos

Similar Questions

Explore conceptually related problems

(1 (7)/(9)"of" (27)/(64))/((11)/(12) xx 9 (9)/(11)) div (4 (4)/(7) "of" (21)/(160))/(2(5)/(6) + 2 (2)/(15)) = ?

The value of 15(7)/(10)+3(1)/(5) of [5(1)/(8)-(2(1)/(4)+(5)/(3)xx(15)/(14)div(10)/(9) of (3)/(14))] is :

Knowledge Check

  • The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

    A
    `4 (1)/(8)`
    B
    `5 (1)/(6)`
    C
    `5 (5)/(6)`
    D
    `4 (1)/(3)`
  • 6(7)/(11)xx5(4)/(9)div9(1)/(4)=?

    A
    21
    B
    13
    C
    9
    D
    4
  • The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)

    A
    `10 (1)/(4)`
    B
    `2(1)/(4)`
    C
    `2 (1)/(2)`
    D
    `3 (1)/(3)`
  • Similar Questions

    Explore conceptually related problems

    The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is

    (4)/(7) " of " (8)/(9) div (8)/(7) xx 180 " of " (1)/(9)= ?

    The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

    What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?

    The value of (5(1)/(2)div3(2)/(3)" " of " "(1)/(4)+ (5(1)/(9)-7(7)/(8)div9(9)/(20))xx(9)/(11))/(5div5" "of " "(1)/(10)- 10xx10div20 is: