Home
Class 12
MATHS
If y=sin^(-1) x, show that (1-x^(2))(...

If `y=sin^(-1) x`, show that
`(1-x^(2))(d^(2)y)/(dx^(2))=x(dy)/(dx)`.

Text Solution

Verified by Experts

The correct Answer is:
`x(dy)/(dx)`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If y = tan^(-1)x show that (1+x^2)(d^2y)/(dx^2) + 2x(dy)/(dx) = 0

If y=3cos(log x)+4 sin(log x) , show the x^(2)(d^(2)y)/(dx^(2))+ x(dy)/(dx)+ y=0 .

If y=x+tan x , show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2y=0 .

If y=sin^(-1) x , show that ((dy)/(dx))_(x=0)=1 .

If y=x+tanx , show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2x=0 .

If e^(gama)(x+1)=1 , show that (d^(2)y)/(dx^(2)=((dy)/(dx))^(2) .

If y=(cot^(-1)x)^(2) , then show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=2 .

If y=3cos(logx) +4sin(log x) ,Show that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

x(dy)/(dx)-y=x^(2)

if y = sin^-1x , show that (1-x^2) y_2 = xy_1