Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2)(x^(3) +...

The value of `int_(-pi//2)^(pi//2)(x^(3) + x cos x + tan^(5)x + 1)dx` is

A

0

B

2

C

`pi`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx \), we will analyze the integrand to determine whether it consists of even or odd functions. ### Step-by-Step Solution: 1. **Identify the Function**: The integrand is \( f(x) = x^3 + x \cos x + \tan^5 x + 1 \). 2. **Check Each Term for Evenness or Oddness**: - **Term 1: \( x^3 \)** \( f(-x) = (-x)^3 = -x^3 \) This is an odd function. - **Term 2: \( x \cos x \)** \( f(-x) = (-x) \cos(-x) = -x \cos x \) This is also an odd function. - **Term 3: \( \tan^5 x \)** \( f(-x) = \tan^5(-x) = (-\tan x)^5 = -\tan^5 x \) This is again an odd function. - **Term 4: \( 1 \)** \( f(-x) = 1 \) This is an even function. 3. **Combine the Results**: The overall function can be expressed as: \[ f(-x) = -x^3 - x \cos x - \tan^5 x + 1 \] Thus, we can separate the odd and even parts: \[ f(x) = (x^3 + x \cos x + \tan^5 x) + 1 \] The first three terms are odd, and the last term is even. 4. **Evaluate the Integral**: The integral of an odd function over a symmetric interval about zero is zero. Therefore: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 + x \cos x + \tan^5 x) \, dx = 0 \] The only term left is the integral of the constant \( 1 \): \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx = 1 \cdot \left( \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) \right) = \pi \] 5. **Final Result**: Therefore, the value of the integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx = \pi \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The value of int_(pi//2)^(pi//2)(x^3+x\ cos x+tan^5x+1)dx , is 2 b. pi c. 0 d. 1

Find the value of int_(-(pi)/(2))^((pi)/(2))(x^(3)+x cos x+tan^(3)x)dx

Knowledge Check

  • The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

    A
    0
    B
    2
    C
    `pi`
    D
    none of these
  • int_(-pi)^(pi) (x^(3) + x cos x+ tan^(5) x +2) =

    A
    `4pi`
    B
    `2pi`
    C
    `pi`
    D
    none
  • The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

    A
    0
    B
    1
    C
    `pi//2`
    D
    `pi//4`
  • Similar Questions

    Explore conceptually related problems

    The value of int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal to

    The value of int_(0)^(pi//2) (dx)/(1+tan^(3) x) is

    The value of int_(- pi//2) ^(pi//2) ( cos^2 x)/( 1+3^x ) dx is

    The value of int_(-pi)^(pi) (1-x^(2)) sin x cos^(2) x dx is

    The value of I=int_(-pi//2)^(pi//2) sqrt( cos x - cos^(3) x)" "dx is