Home
Class 12
MATHS
If 2^x+2^y=2^(x+y), then dy/dx is equal ...

If `2^x+2^y=2^(x+y)`, then dy/dx is equal to :

A

`((2^x+2^y)/(2^x-2^y))`

B

`((2^x+2^y))/((1+2^(x+y)))`

C

`2^(x-y)((2^y-1)/(1-2^x))`

D

`(2^(x+y)-2^x)/2^y`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

" If 2^(x)+2^(y)=x+y, then (dy)/(dx) is equal to "

If x^y=y^x , then (dy)/(dx) is equal to......

If y^(x) = x^(y) , "then" (dy)/(dx) is equal to

If 2y=sin^-1(x+5y),then,(dy)/(dx) is equal to

If 2^(x) +2y =2^(x+y),then (dy)/(dx)=

If x+y=2^(y), then (dy)/(dx) equals-

If x^(y) = e^(2(x-y)), "then" (dy)/(dx) is equal to

If y= ( cos x ^(2))^(2) , "then" (dy)/(dx) is equal to