Home
Class 12
MATHS
If A^(2)-A+ I =0 then the inverse of A i...

If `A^(2)-A+ I =0` then the inverse of A is -
(a) I-A
(b) A-I
(c) A
(d) A+I

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(2)-A+I=0, then the inverse of A is: (A) A+I (B) A(C)A-I (D) I-A

If A^(2)-A+I=0, then the invers of A is A^(-2) b.A+I c.I-A d.A-I

If A^(2) - A + I = 0 , then the inverse of the matrix A is

what is the value of i^(-35)+i^7 ? (a) 1 (b) 3 (c) 0 (d) 2

"If A" = [{:(1, 2), (1, 3):}] , then find A^(-1) + A . (a) I (b) 2I (c) 3I (d) 4I

Inverse of (3+4i)/(4-5i)

Write the value of |a+i b c+i d-c+i d a-i b| .

[veci vec i vec i] = (A) 0 (B) 1 (C) vec i (D) vec k