Home
Class 10
MATHS
Evaluate : (5 cos^(2)60^@+4cos^(2)30^@ ...

Evaluate : `(5 cos^(2)60^@+4cos^(2)30^@ - tan^(2)45^@)/(sin^(2) 30^@+cos^2 60^@)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{5 \cos^2 60^\circ + 4 \cos^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 60^\circ} \] we will first find the values of the trigonometric functions involved. ### Step 1: Calculate \( \cos 60^\circ \) The value of \( \cos 60^\circ \) is \[ \cos 60^\circ = \frac{1}{2} \] ### Step 2: Calculate \( \cos^2 60^\circ \) Now, we square the value: \[ \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] ### Step 3: Calculate \( \cos 30^\circ \) The value of \( \cos 30^\circ \) is \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \] ### Step 4: Calculate \( \cos^2 30^\circ \) Now, we square the value: \[ \cos^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] ### Step 5: Calculate \( \tan 45^\circ \) The value of \( \tan 45^\circ \) is \[ \tan 45^\circ = 1 \] ### Step 6: Calculate \( \tan^2 45^\circ \) Now, we square the value: \[ \tan^2 45^\circ = 1^2 = 1 \] ### Step 7: Calculate \( \sin 30^\circ \) The value of \( \sin 30^\circ \) is \[ \sin 30^\circ = \frac{1}{2} \] ### Step 8: Calculate \( \sin^2 30^\circ \) Now, we square the value: \[ \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] ### Step 9: Calculate \( \cos^2 60^\circ \) (already calculated) We already know: \[ \cos^2 60^\circ = \frac{1}{4} \] ### Step 10: Substitute values into the expression Now we substitute all the calculated values into the original expression: \[ \frac{5 \left(\frac{1}{4}\right) + 4 \left(\frac{3}{4}\right) - 1}{\frac{1}{4} + \frac{1}{4}} \] ### Step 11: Simplify the numerator Calculating the numerator: \[ 5 \cdot \frac{1}{4} = \frac{5}{4} \] \[ 4 \cdot \frac{3}{4} = 3 \] So, the numerator becomes: \[ \frac{5}{4} + 3 - 1 = \frac{5}{4} + \frac{12}{4} - \frac{4}{4} = \frac{5 + 12 - 4}{4} = \frac{13}{4} \] ### Step 12: Simplify the denominator Calculating the denominator: \[ \frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2} \] ### Step 13: Final calculation Now we have: \[ \frac{\frac{13}{4}}{\frac{1}{2}} = \frac{13}{4} \cdot \frac{2}{1} = \frac{26}{4} = \frac{13}{2} \] ### Final Answer Thus, the value of the expression is \[ \frac{13}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise SELF ASSESSMENT - 1 (I. Objective Type Questions:) ( [A] Multiple Choice Questions:)|3 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise SELF ASSESSMENT - 1 (I. Objective Type Questions:) ( [B] Fill in the Blanks)|2 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise CASE BASED MCQs III|5 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAL PUBLICATION|Exercise Self - Assessment |15 Videos
  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise BOARD CORNER (LONG ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec ^(2) 30^(@) - tan ^(2) 45^(@))/( sin ^(2) 30^(@) + cos ^(2) 30^(@))

(5cos^(2)60+4sec^(2)30-tan^(2)45)/(sin^(2)30+cos^(2)30)

Knowledge Check

  • Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec^(2) 30^(@) - tan^(2) 45^(@))/( sin^(2) 30^(@) + cos^(2) 30^(@))

    A
    `2 (5)/(16)`
    B
    `(67)/(12)`
    C
    0
    D
    1
  • The value of (cos^(2)60^(@)+4sec^(2)30^(@)-tan^(2)45^(@))/(sin^(2)30^(@)+cos^(2)30^(@)) is

    A
    `(64)/(sqrt(3))`
    B
    `(55)/(12)`
    C
    `(67)/(12)`
    D
    `(67)/(10)`
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following (i) sin 60^@ cos30^@ + sin 30^@ cos 60^@ (ii) 2tan^2 45^@ + cos^2 30^@ - sin^2 60^@ (iii) (cos45^@)/(sec30^@ + c o s e c 30^@) (iv) (sin30^@ + tan45^@ - c o s e c 60^@ )/(sec30^@ + cos60^@ +cot45^@) (v) (5cos^2 60^@ + 4sec^2 30^@ - tan^2 45^@ )/ (sin^2 30^@ + cos^2 30^@ )

    Evaluate : 3 cos^(2)60^(@)sec^(2)30^(@)-2 sin^(2)30^(@)tan^(2)60^(@)

    The value of (5cos^2 60^@+4sec^2 30^@-tan^2 45^@)/(tan^2 60^@- sin^2 30^@-cos^2 45^@) is: (5cos^2 60^@+4sec^2 30^@-tan^2 45^@)/(tan^2 60^@- sin^2 30^@-cos^2 45^@) का मान क्या होगा ?

    Evaluate : 2 tan^(2) 60^(@) +cos^(2) 30^(@) +sin^(2)60 .

    cos^(2)30^@-sin^(2)30^@=cos60^@

    Evaluate : sin^2 60^@+ 2tan 45^@-cos^2 30^@