Home
Class 10
MATHS
If six x = 1/3 , find the value of cot^(...

If six `x = 1/3` , find the value of `cot^(2)x`.

A

1

B

2

C

3

D

8

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIKSHA QUESTIONS

    OSWAL PUBLICATION|Exercise UNIT -V: Trigonometry (Introduction to Trigonometry ) (VERY SHORT ANSWER TYPE QUESTIONS )|15 Videos
  • DIKSHA QUESTIONS

    OSWAL PUBLICATION|Exercise UNIT -V: Trigonometry (Introduction to Trigonometry ) (Long Answer Type Questions)|9 Videos
  • DIKSHA QUESTIONS

    OSWAL PUBLICATION|Exercise Unit -IV: Geometry (Constructions) (Long Answer Type Questions)|16 Videos
  • COORDINATE GEOMETRY

    OSWAL PUBLICATION|Exercise SELF ASSESSMENT |20 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAL PUBLICATION|Exercise Self - Assessment |15 Videos

Similar Questions

Explore conceptually related problems

If sin x = 1/3 then find the value of (2 cot^(2)x+2) .

If sin x+sin^(2)x=1, then the value of cos^(2)x+cos^(4)x+cot^(4)x-cot^(2)x is

Knowledge Check

  • If sin^(4)x + sin^(2) x =1 , then the value of cot^(4)x + cot^(2)x is:

    A
    `cos^(2) x`
    B
    `sin^(2)x`
    C
    `tan^(2)x`
    D
    1
  • If cosec x -cot x = a, then find the value of cosx .

    A
    `(1-a^(2))/(1+a^(2))`
    B
    `(a^(2)-1)/(a^(2)+1)`
    C
    `(a-1)/(a^(2)+1)`
    D
    `(a^(2)-1)/(a+1)`
  • Find the value of tan { cot ^(-1) ((-2)/3)}

    A
    `- 2/3`
    B
    ` 2/3`
    C
    ` 3/2`
    D
    `- 3/2`
  • Similar Questions

    Explore conceptually related problems

    If tanx=-(4)/(3), (3pi)/(2) lt x lt 2pi , find the value of 9sec^(2)x-4 cot x .

    If sin x+sin^(2)x=1 then the value of cos^(2)x+cos^(4)x+cot^(4)x-cot^(2)x is

    If x>y>z>0, then find the value of cot^(-1)(xy+1)/(x-y)+cot^(-1)(yz+1)/(zy-z)+cot^(-1)(zx+1)/(z-x)

    If x +(1)/(x) =2 , find the value of (x^2 +(1)/(x^2))(x^3 +(1)/(x^3))

    If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + "cot"^(-1)(yz + 1)/(y - z) + "cot"^(-1)(zx + 1)/(z - x)