Home
Class 10
MATHS
If a and B are the zeroes of the polynom...

If a and B are the zeroes of the polynomial f(x) = `x^(2) - 4x - 5` then find the value of `alpha^(2) + beta^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^2 + \beta^2 \) where \( \alpha \) and \( \beta \) are the zeros of the polynomial \( f(x) = x^2 - 4x - 5 \), we can follow these steps: ### Step 1: Identify the coefficients The polynomial is given as: \[ f(x) = x^2 - 4x - 5 \] Here, we can identify the coefficients: - \( a = 1 \) (coefficient of \( x^2 \)) - \( b = -4 \) (coefficient of \( x \)) - \( c = -5 \) (constant term) ### Step 2: Calculate the sum and product of the zeros Using Vieta's formulas: - The sum of the zeros \( \alpha + \beta \) is given by: \[ \alpha + \beta = -\frac{b}{a} = -\frac{-4}{1} = 4 \] - The product of the zeros \( \alpha \beta \) is given by: \[ \alpha \beta = \frac{c}{a} = \frac{-5}{1} = -5 \] ### Step 3: Use the identity to find \( \alpha^2 + \beta^2 \) We can use the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values we found: \[ \alpha^2 + \beta^2 = (4)^2 - 2(-5) \] ### Step 4: Calculate \( \alpha^2 + \beta^2 \) Now, calculate: \[ \alpha^2 + \beta^2 = 16 + 10 = 26 \] ### Final Answer Thus, the value of \( \alpha^2 + \beta^2 \) is: \[ \boxed{26} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -II ( SECTION-A ) |5 Videos
  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -II ( SECTION- B ) |2 Videos
  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -I ( SECTION-B )|8 Videos
  • ARITHMETIC PROGRESSIONS

    OSWAL PUBLICATION|Exercise CASE - BASED MCQs |15 Videos
  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -III ( SECTION- D ) |2 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 , then find the value of ((alpha)/(beta) + (beta)/(alpha)) .

If a, ß are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/alpha + 1/beta .

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 then find the value of ((alpha)/(beta)+(beta)/(alpha)) .

If alpha beta are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/(alpha) + 1/beta

If alpha and beta are the zeros of the polynomial f(x) = 5x^(2) - 7x + 1 , find the value of (1/alpha+1/beta).

If alpha and beta are the zeros of the polynomial p(x) = x^(2) - px + q , then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeroes of the polynomial p(x)=3x^(2)-14x+15 .find the value of alpha^2+beta^2

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-px+q, then find the values of (i)alpha^(2)+beta^(2)( ii) (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeroes of the polynomial 2x^(2)-4x+5 find the value of alpha^(2)+beta^(2)

If alpha and beta are the zeroes of the quadratic polynomial f(x)=x^2-4x+3 then find the value of alpha^4beta^2+alpha^2beta^4