Home
Class 10
MATHS
If alpha and beta are the zeroes of the ...

If `alpha and beta` are the zeroes of the polynomial `f(x) = 5x^(2) - 7x + 1`, then find the value of `((alpha)/(beta) + (beta)/(alpha))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)\) for the polynomial \(f(x) = 5x^2 - 7x + 1\), follow these steps: 1. **Identify the polynomial coefficients:** The given polynomial is \(f(x) = 5x^2 - 7x + 1\). - Coefficient \(a = 5\) - Coefficient \(b = -7\) - Coefficient \(c = 1\) 2. **Find the sum and product of the zeroes:** - Sum of the zeroes \(\alpha + \beta = -\frac{b}{a}\) - Product of the zeroes \(\alpha \beta = \frac{c}{a}\) Using the given coefficients: \[ \alpha + \beta = -\left(\frac{-7}{5}\right) = \frac{7}{5} \] \[ \alpha \beta = \frac{1}{5} \] 3. **Express \(\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)\) in terms of \(\alpha\) and \(\beta\):** \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta} \] 4. **Simplify \(\alpha^2 + \beta^2\) using the identity:** \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta \] Substitute the known values: \[ \alpha^2 + \beta^2 = \left(\frac{7}{5}\right)^2 - 2 \left(\frac{1}{5}\right) \] \[ \alpha^2 + \beta^2 = \frac{49}{25} - \frac{2}{5} \] 5. **Convert \(\frac{2}{5}\) to a common denominator:** \[ \frac{2}{5} = \frac{2 \times 5}{5 \times 5} = \frac{10}{25} \] 6. **Subtract the fractions:** \[ \alpha^2 + \beta^2 = \frac{49}{25} - \frac{10}{25} = \frac{39}{25} \] 7. **Divide by \(\alpha \beta\):** \[ \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{\frac{39}{25}}{\frac{1}{5}} = \frac{39}{25} \times \frac{5}{1} = \frac{39 \times 5}{25} = \frac{195}{25} = 7.8 \] Therefore, the value of \(\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)\) is \(7.8\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 02

    EDUCART PUBLICATION|Exercise SECTION - D|9 Videos
  • SAMPLE QUESTION PAPER 02

    EDUCART PUBLICATION|Exercise SECTION - B|9 Videos
  • SAMPLE PAPER SOLVED 4

    EDUCART PUBLICATION|Exercise SECTION - C|10 Videos
  • STATISTICS AND PROBABILITY

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|19 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeros of the polynomial p(x) = x^(2) - px + q , then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeros of the polynomial f(x) = 5x^(2) - 7x + 1 , find the value of (1/alpha+1/beta).

If alpha beta are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/(alpha) + 1/beta

If alpha and beta are the zeros of the quadratic polynomial f(x)=5x^(2)-7x+1, find the value of (1)/(alpha)+(1)/(beta)

If a, ß are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/alpha + 1/beta .

If alpha and beta are zeroes of the quadratic polynomial f(x) =3x^(2)-5x-2 , then find the value of ((alpha^(2))/(beta)+(beta^(2))/(alpha))+6(alpha+1)(beta+1) .

If alpha and beta are zeroes of the quadratic polynomial p(x)=6x^(2)+x-1, then find the value of (alpha)/(beta)+(beta)/(alpha)+2((1)/(alpha)+(1)/(beta))+3 alpha beta

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)+x-2, find the value of (1)/(alpha)-(1)/(beta)

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-x-4, find the value of (1)/(alpha)+(1)/(beta)-alpha beta

If alpha and beta are zeroes of polynomial p(x) = x^(2) - 5x +6 , then find the value of alpha + beta - 3 alpha beta