Home
Class 12
MATHS
If A=([x,x],[x,x]) then A^(n)(n in N)= ...

If `A=([x,x],[x,x])` then `A^(n)(n in N)=`
1) `([2^nx^n,2^nx^n],[2^nx^n,2^nx^n])`
2) `([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n])`
3) `I`
4) `([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)])`

Answer

Step by step text solution for If A=([x,x],[x,x]) then A^(n)(n in N)= 1) ([2^nx^n,2^nx^n],[2^nx^n,2^nx^n]) 2) ([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n]) 3) I 4) ([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)]) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

(d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) (n !)/(x^n) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

Knowledge Check

  • If (n^(n))/(n!)=(nx)/((n-1)!), x =

    A
    `n^(n-2)`
    B
    `n^(n-1)`
    C
    `n^(n+1)`
    D
    `n^((1)/(2))`
  • Similar Questions

    Explore conceptually related problems

    cos^(-1)((1-x^(2n))/(1+x^(2n)))

    Sum of series n+(n-1)x+(n-2)x^2+........+2x^(n-2)+x^(n-1).

    Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .

    If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to (a) n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

    Evaluate: inte^x(1+n x^(n-1)-x^(2n))/((1-x^n)sqrt(1-x^(2n)))dx

    Show that 1/(x+1)+2/(x^2+1)+4/x^4+1)+…..+2^n/(x^2^n+1)= /(x-1)- 2^(n+1)/(x^2(n+1) -1)

    Find the sum (x+2)^(n-1)+(x+2)^(n-2)(x+1)^+(x+2)^(n-3)(x+1)^2++(x+1)^(n-1) (x+2)^(n-2)-(x+1)^n b. (x+2)^(n-2)-(x+1)^(n-1) c. (x+2)^n-(x+1)^n d. none of these