Home
Class 10
MATHS
If cot theta = (7)/(8), then the value o...

If `cot theta = (7)/(8)`, then the value of `((1 + sin theta)(1- sin theta))/((1 + cos theta)(1- cos theta))` = _________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{(1 + \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(1 - \cos \theta)} \] Given that \( \cot \theta = \frac{7}{8} \). ### Step 1: Use the cotangent identity Since \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), we can express \( \cos \theta \) and \( \sin \theta \) in terms of a right triangle. Let: - Opposite side = 7 (for sine) - Adjacent side = 8 (for cosine) Using the Pythagorean theorem, we can find the hypotenuse \( r \): \[ r = \sqrt{7^2 + 8^2} = \sqrt{49 + 64} = \sqrt{113} \] Thus, we have: \[ \sin \theta = \frac{7}{\sqrt{113}}, \quad \cos \theta = \frac{8}{\sqrt{113}} \] ### Step 2: Substitute into the expression Now we substitute \( \sin \theta \) and \( \cos \theta \) into the expression: \[ 1 + \sin \theta = 1 + \frac{7}{\sqrt{113}} = \frac{\sqrt{113} + 7}{\sqrt{113}} \] \[ 1 - \sin \theta = 1 - \frac{7}{\sqrt{113}} = \frac{\sqrt{113} - 7}{\sqrt{113}} \] \[ 1 + \cos \theta = 1 + \frac{8}{\sqrt{113}} = \frac{\sqrt{113} + 8}{\sqrt{113}} \] \[ 1 - \cos \theta = 1 - \frac{8}{\sqrt{113}} = \frac{\sqrt{113} - 8}{\sqrt{113}} \] ### Step 3: Calculate the numerator and denominator Now we can calculate the numerator and denominator of the expression: **Numerator:** \[ (1 + \sin \theta)(1 - \sin \theta) = \left(\frac{\sqrt{113} + 7}{\sqrt{113}}\right)\left(\frac{\sqrt{113} - 7}{\sqrt{113}}\right) = \frac{(\sqrt{113})^2 - 7^2}{113} = \frac{113 - 49}{113} = \frac{64}{113} \] **Denominator:** \[ (1 + \cos \theta)(1 - \cos \theta) = \left(\frac{\sqrt{113} + 8}{\sqrt{113}}\right)\left(\frac{\sqrt{113} - 8}{\sqrt{113}}\right) = \frac{(\sqrt{113})^2 - 8^2}{113} = \frac{113 - 64}{113} = \frac{49}{113} \] ### Step 4: Combine the results Now we can combine the results to find the value of the expression: \[ \frac{(1 + \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(1 - \cos \theta)} = \frac{\frac{64}{113}}{\frac{49}{113}} = \frac{64}{49} \] ### Final Answer Thus, the value of the expression is: \[ \frac{64}{49} \]
Promotional Banner

Topper's Solved these Questions

  • CBSE PAPER (12 MARCH 2020)

    EDUCART PUBLICATION|Exercise Section - B|9 Videos
  • CBSE PAPER (12 MARCH 2020)

    EDUCART PUBLICATION|Exercise Section - C |11 Videos
  • CBSE PAPER (12 MARCH 2020)

    EDUCART PUBLICATION|Exercise Section - A (Fill in the blanks )|5 Videos
  • ARITHMETIC PROGRESSIONS

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|44 Videos
  • CBSE TERM-1 SAMPLE PAPER 2

    EDUCART PUBLICATION|Exercise Section -C|7 Videos

Similar Questions

Explore conceptually related problems

If cot theta=(7)/(8) then find the value ((1-sin theta)(1+sin theta))/((1-cos theta)(1+cos theta))

If quad cot theta=(7)/(8) ,evaluate: ( i ) ((1+sin theta)(1-sin theta))/((1+cos theta)(1-cos theta)) (ii)

If cot theta=(15)/(8), then Evaluate ((2+2sin theta)(1-sin theta))/((1+cos theta)(2-2cos theta))

If cot theta=(7)/(8), evaluate.1.)((1+sin theta)(1-sin theta))/((1-cos theta)(1+cos theta))

cos theta/(1+sin theta)=(1-sin theta)/cos theta

(1 + sin theta-cos theta) / (1 + sin theta + cos theta) =

(sin theta)/(1-cos theta)=(1+cos theta)/(sin theta)

(1 + sin theta-cos theta) / (1 + sin theta + cos theta)