Home
Class 12
MATHS
If A = [(1,1,1),(1,2,-3),(2,-1,3)] then ...

If A = `[(1,1,1),(1,2,-3),(2,-1,3)]` then | adj A| =

A

121

B

132

C

178

D

184

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of |adj A| for the given matrix \( A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by the formula: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 1, b = 1, c = 1 \) - \( d = 1, e = 2, f = -3 \) - \( g = 2, h = -1, i = 3 \) Now substituting these values into the determinant formula: \[ |A| = 1 \cdot (2 \cdot 3 - (-3) \cdot (-1)) - 1 \cdot (1 \cdot 3 - (-3) \cdot 2) + 1 \cdot (1 \cdot (-1) - 2 \cdot 2) \] ### Step 2: Simplify Each Term Calculating each term: 1. First term: \[ 1 \cdot (6 - 3) = 1 \cdot 3 = 3 \] 2. Second term: \[ -1 \cdot (3 - (-6)) = -1 \cdot (3 + 6) = -1 \cdot 9 = -9 \] 3. Third term: \[ 1 \cdot (-1 - 4) = 1 \cdot (-5) = -5 \] ### Step 3: Combine the Results Now, we combine the results of the three terms: \[ |A| = 3 - 9 - 5 = -11 \] ### Step 4: Calculate the Determinant of the Adjoint of A The determinant of the adjoint of a matrix \( A \) is given by the formula: \[ |\text{adj } A| = |A|^{n-1} \] where \( n \) is the order of the matrix. Since \( A \) is a 3x3 matrix, \( n = 3 \). Thus, \[ |\text{adj } A| = |A|^{3-1} = |A|^2 = (-11)^2 = 121 \] ### Final Answer \[ |\text{adj } A| = 121 \] ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1, 1, 1),(1, 2, "-3"),(2,"-1",3):}] , then adj A is

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (A)) is

If A=[(1,2,3),(1,4,9),(1,8,27)] , then | adj A| is equal to

If A=|{:(1,1,1),(1,2,-3),(2,-1,3):}| , then show that A. (ajd.A)= (adj.A)A.

If A = [{:(1,1,2),(1,3,4),(1,-1,3):}] , B = adj A and C = 3A then (|adjB|)/(|C |) is equal to

If A={:[(1,2,-1),(-1,2,2),(2,-1,1)],:} then : |adj(adj.A)|=

EDUCART PUBLICATION-SAMPLE PAPER 7-SECTION -B
  1. Which of the folowing should be the feasible region of the system of l...

    Text Solution

    |

  2. The function defined as f(x) = 2x^(3) -6x +3 is

    Text Solution

    |

  3. If the function f : { 1,2,3} rarr { 1,2,3} is one one then it must be ...

    Text Solution

    |

  4. The value of sin [ (pi)/(3) - sin^(-1) (- (sqrt(3))/(2))]

    Text Solution

    |

  5. If [(x),(y),(z)]=(1)/(17) [(1,5,1),(8,6,-9),(10,-1,-7)][(8),(1),(4)] t...

    Text Solution

    |

  6. If y = cos^(-1) [(x+sqrt(1-x^(2)))/(sqrt(2))] then (dy)/(dx) =

    Text Solution

    |

  7. If the function y = m log x + nx^(2) +x has its critcal points at x = ...

    Text Solution

    |

  8. If y = (cot^(-1) x)^(2) then

    Text Solution

    |

  9. If the function f : A rarr B is defined as f(x) = (x-2)/(x-3) then t...

    Text Solution

    |

  10. If A = [ (2,2,-4),(-4,2,-4),(2,-1,5)] and B = [ (1,-1,0),(2,3,4),(0,1,...

    Text Solution

    |

  11. If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

    Text Solution

    |

  12. The equation of normal to the curve y = 3x^(2) - 4x +7 at x = 1 is :

    Text Solution

    |

  13. If the corner points of a feasible region of system of linear inequali...

    Text Solution

    |

  14. If the matrix P = [(7,a,4),(-1,3,b),(c, 6, 2)] is a symmetric matrix t...

    Text Solution

    |

  15. If the function f(x ) = {{:(10 , x lt=3),(ax+b,3lt xlt 7),(18,x gt=7):...

    Text Solution

    |

  16. If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

    Text Solution

    |

  17. The function f(t) = 4 sin^(3) t -6 sin^(2) t +12 sin t + 100 is stric...

    Text Solution

    |

  18. The tangent to the curve y = e^(2x) at the point (0,1) meets x - axi...

    Text Solution

    |

  19. The value of expression tan [(1)/(2) cos^(-1) ""(2)/(sqrt(5)) ] is

    Text Solution

    |

  20. The cofactor of the element 0 in the determinant |(2,-3,5),(6,0,4),(1,...

    Text Solution

    |