Home
Class 12
MATHS
If A = [(1,1,1),(1,2,-3),(2,-1,3)] then ...

If A = `[(1,1,1),(1,2,-3),(2,-1,3)]` then | adj A| =

A

121

B

132

C

178

D

184

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of |adj A| for the given matrix \( A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by the formula: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 1, b = 1, c = 1 \) - \( d = 1, e = 2, f = -3 \) - \( g = 2, h = -1, i = 3 \) Now substituting these values into the determinant formula: \[ |A| = 1 \cdot (2 \cdot 3 - (-3) \cdot (-1)) - 1 \cdot (1 \cdot 3 - (-3) \cdot 2) + 1 \cdot (1 \cdot (-1) - 2 \cdot 2) \] ### Step 2: Simplify Each Term Calculating each term: 1. First term: \[ 1 \cdot (6 - 3) = 1 \cdot 3 = 3 \] 2. Second term: \[ -1 \cdot (3 - (-6)) = -1 \cdot (3 + 6) = -1 \cdot 9 = -9 \] 3. Third term: \[ 1 \cdot (-1 - 4) = 1 \cdot (-5) = -5 \] ### Step 3: Combine the Results Now, we combine the results of the three terms: \[ |A| = 3 - 9 - 5 = -11 \] ### Step 4: Calculate the Determinant of the Adjoint of A The determinant of the adjoint of a matrix \( A \) is given by the formula: \[ |\text{adj } A| = |A|^{n-1} \] where \( n \) is the order of the matrix. Since \( A \) is a 3x3 matrix, \( n = 3 \). Thus, \[ |\text{adj } A| = |A|^{3-1} = |A|^2 = (-11)^2 = 121 \] ### Final Answer \[ |\text{adj } A| = 121 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (A)) is

Knowledge Check

  • If A = [ (1,-2,2),(0,2,-3),(3,-2,4)] then A (adj A ) =

    A
    `[ (1,7,-9),(2,3,4),(-1,-1,0)]`
    B
    `[ (4,-5,3),(-3,-2,1),(0,7,9)]`
    C
    `[(8,0,0),(0,8,0),(0,0,8)]`
    D
    `[(0,-1,3),(0,4,7),(0,0,2)]`
  • If A= [ (1,2,-1),(-1,1,2),(2,-1,1)] then det {adj (A)} equals

    A
    `(14)^(2)`
    B
    `(13)^(2)`
    C
    `(14)^(3)`
    D
    `(13)^(3)`
  • If A=[{:(1, 1, 1),(1, 2, "-3"),(2,"-1",3):}] , then adj A is

    A
    `[{:(3, "-9", "-5"),("-4", 1, 3),("-5",4,1):}]`
    B
    `[{:(3, "-4", "-5"),("-9", 1, 4),("-5",3,1):}]`
    C
    `[{:("-3", 4, 5),(9, "-1", "-4"),(5,"-3","-1"):}]`
    D
    `[{:(3, "-9","-5"),(4, "-1", 3),("-5",4,1):}]`
  • Similar Questions

    Explore conceptually related problems

    If A=|{:(1,1,1),(1,2,-3),(2,-1,3):}| , then show that A. (ajd.A)= (adj.A)A.

    If A={:[(1,2,-1),(-1,2,2),(2,-1,1)],:} then : |adj(adj.A)|=

    If A=[(1,2,3),(1,4,9),(1,8,27)] , then | adj A| is equal to

    If A = [{:(1,1,2),(1,3,4),(1,-1,3):}] , B = adj A and C = 3A then (|adjB|)/(|C |) is equal to

    If A=[(3,-3,4),(2,-3,4),(0,-1,1)] then adj (adj A) is equal to