Home
Class 12
MATHS
If sin x + sin^(2) x= 1 , then the value...

If `sin x + sin^(2) x= 1` , then the value of `cos^(8) x - cos ^(4) x + 2cos^(2)x -1 ` is equal to :

A

0

B

1

C

2

D

`sin^(2)x`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If sin^-1 x + sin^-1y = pi/2 , then value of cos^-1 x + cos^-1 y

If sin x + sin^2 x = 1 , show that : cos^4 x+ cos^2 x=1 .

Knowledge Check

  • The value of sin^(-1)x+cos^(-1)x is

    A
    `(pi)/(2)`
    B
    `pi`
    C
    `-(pi)/(2)`
    D
    `-pi`
  • The value of cos(sin^(-1)x+cos^(-1)x) is equal to

    A
    1
    B
    0
    C
    `-(pi)/(2)`
    D
    `(pi)/(2)`
  • int (sin^(2)x-cos^(2)x)/(sin^(2)x cos^(2)x)dx is equal to

    A
    `tan x +cot x +c`
    B
    `tan x +"cosec"x+c`
    C
    `-tan x +cotx+c`
    D
    `tan x +sec x +c`
  • Similar Questions

    Explore conceptually related problems

    The value of cos (sin^-1 x + cos^-1 x) is equal to :

    int (sin^2 x - cos^2 x)/(sin^2 x cos^2 x) dx is equal to :

    If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    If sin^-1 (x) + cos^-1(1/4) = pi/2 , then value of x equals :

    int (sin^(2)x-cos^(2)x)/(sin^(2)x cos^(2)x)dx is equal to