Home
Class 12
MATHS
If n is a positive integer, show that ...

If n is a positive integer, show that
`( P + iQ)^(1//n) + ( P - iQ)^(1//n) = 2 ( P^(2) + Q^(2))^(1//2n) cos (1/n , tan . Q/P)`.

Answer

Step by step text solution for If n is a positive integer, show that ( P + iQ)^(1//n) + ( P - iQ)^(1//n) = 2 ( P^(2) + Q^(2))^(1//2n) cos (1/n , tan . Q/P). by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL PAPER 9

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-B (II. SHORT ANSWER TYPE QUESTIONS) |7 Videos
  • MODEL PAPER 8

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (LONG ANSWER TYPE QUESTIONS)|7 Videos
  • MOST IMPORTANT QUESTIONS

    VGS PUBLICATION-BRILLIANT|Exercise DIFFERENTIAL EQUATIONS(LONG ANSWER TYPE QUESTIONS)|8 Videos

Similar Questions

Explore conceptually related problems

If n is a positive integer, show that (1 + i)^(n) + (1 - i)^(n) = 2 ^((n+2)/2) cos ((npi)/4) .

If n is a positive integer prove that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))

Knowledge Check

  • If 'n' is a positive integer, then n.1+ (n-1) . 2+ (n-2). 3+….. + 1.n=

    A
    `(n (n+1) )/(2)`
    B
    `(n (n+1) (n+2) )/( 6)`
    C
    `( (n+1)(n+2))/( 2)`
    D
    `(n(n+1) (2n+1))/(6)`
  • If n is positive integer and (1+i)^(2n)+(1-i)^(2n)=k cos (n pi//2) , then the value of k is

    A
    `2^n`
    B
    `2^(n-1)`
    C
    `2^(n+1)`
    D
    1
  • If 0 < p

    A
    e
    B
    p
    C
    q
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If n is integer then show that (1 + i)^(2n) + (1 - i)^(2n) = 2 ^(n+1) cos . (npi)/2 .

    If n is a positive integer then 2^(4n) - 15n - 1 is divisible by

    If n is a positive integer and (1+i)^(2n)+(1-i)^(2n)=kcos(npi//2) then the value of k is

    If n is an integer then show that (1 + cos theta + i sin theta)^(n) + (1 + cos theta - i sin theta )^(n) = 2^(n+1) cos ^(n) ( theta//2) cos ((n theta)/2) .

    If n is a positive integer, prove that 1-2n +(2n(2n-1))/(2!) - (2n(2n-1) (2n-2))/(3!) +… + (-1)^(n-1) (2n(2n-1) …(n+2))/((n-1)!) = (-1)^(n+1) ((2n)!)/(2(n!)^(2))