Home
Class 12
PHYSICS
The unit vector parallel to the resultan...

The unit vector parallel to the resultant of the vectors A = 4i+3j + 6k and B = -i + 3j-8k is

A

`1/7(3hati + 6hatj - 2hatk)`

B

`1/7(3hati + 6hatj + 2hatk)`

C

`1/49(3hati + 6hatj - 2hatk)`

D

`1/49(3hati - 6hatj + 2hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector parallel to the resultant of the vectors \( \mathbf{A} = 4\mathbf{i} + 3\mathbf{j} + 6\mathbf{k} \) and \( \mathbf{B} = -\mathbf{i} + 3\mathbf{j} - 8\mathbf{k} \), we can follow these steps: ### Step 1: Find the Resultant Vector The resultant vector \( \mathbf{R} \) is given by the sum of the two vectors \( \mathbf{A} \) and \( \mathbf{B} \). \[ \mathbf{R} = \mathbf{A} + \mathbf{B} \] Substituting the values of \( \mathbf{A} \) and \( \mathbf{B} \): \[ \mathbf{R} = (4\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}) + (-\mathbf{i} + 3\mathbf{j} - 8\mathbf{k}) \] ### Step 2: Combine Like Terms Now, we combine the components of \( \mathbf{R} \): \[ \mathbf{R} = (4 - 1)\mathbf{i} + (3 + 3)\mathbf{j} + (6 - 8)\mathbf{k} \] Calculating each component: \[ \mathbf{R} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k} \] ### Step 3: Calculate the Magnitude of the Resultant Vector The magnitude \( |\mathbf{R}| \) of the resultant vector can be calculated using the formula: \[ |\mathbf{R}| = \sqrt{(R_x)^2 + (R_y)^2 + (R_z)^2} \] Substituting the components of \( \mathbf{R} \): \[ |\mathbf{R}| = \sqrt{(3)^2 + (6)^2 + (-2)^2} \] Calculating the squares: \[ |\mathbf{R}| = \sqrt{9 + 36 + 4} = \sqrt{49} = 7 \] ### Step 4: Find the Unit Vector The unit vector \( \hat{\mathbf{R}} \) in the direction of \( \mathbf{R} \) is given by: \[ \hat{\mathbf{R}} = \frac{\mathbf{R}}{|\mathbf{R}|} \] Substituting \( \mathbf{R} \) and its magnitude: \[ \hat{\mathbf{R}} = \frac{3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}}{7} \] This can be expressed as: \[ \hat{\mathbf{R}} = \frac{3}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k} \] ### Final Answer Thus, the unit vector parallel to the resultant of the vectors \( \mathbf{A} \) and \( \mathbf{B} \) is: \[ \hat{\mathbf{R}} = \frac{3}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors -> a=2 hat i+3 hat j- hat k and -> b= hat i-2 hat j+ hat k .

Find a vector of magnitude 5 units and parallel to the resultant of the vectors vec a=2hat i +3hat j -hat k and vec b=hat i-2hat j+ hat k

Unit vector parallel to the resultant of vectors vec(A)= 4hat(i)-3hat(j) and vec(B)= 8hat(i)+8hat(j) will be

Find a vector magnitude 5 units, and parallel to the resultant of the vectors vec a=2 hat i+3 hat j- hat k and vec b= hat i-2 hat j+ hat kdot

Find a vector magnitude 5 units, and parallel to the resultant of the vectors vec a=2 hat i+3 hat j- hat k and vec b= hat i-2 hat j+ hat kdot

The cross product of the vectors (2i - 3j + 4k) and (I + 4j -5k) is

Find the unit vector in the direction of the sum of the vectors 2 hat i+3 hat j- hat k and 4 hat i-3 hat j+2 hat kdot

The magnitude of the vector product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vectors 2 hat i+4 hat j-\ 5 hat k and lambda hat i+2 hat j+3 hat k is equal to sqrt(2) . Find the value of lambda .

Find a unit vector in the direction of the resultant of the vectors hat i- hat j+3 hat k ,""2 hat i+ hat j-2 hat k"and"3 hat i +2 hat j-2 hat k""dot