• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
Class 12
MATHS
Find the maximum or minimum values of th...

Find the maximum or minimum values of the following expressions on R
i) `x^(2) + 6x – 27` ii) `3x^(2) + 2x + 7` iii) `x^(2) - 12x + 32` iv) `2x^(2) + 3x + 1`

To view this video, please enable JavaScript and consider upgrading to a web browser thatsupports HTML5 video

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum or minimum values of the given quadratic expressions, we will use the concept of derivatives. For a quadratic function \( f(x) = ax^2 + bx + c \), the vertex form gives us the maximum or minimum value depending on the sign of \( a \). If \( a > 0 \), the function has a minimum value; if \( a < 0 \), it has a maximum value. ### Step-by-step Solutions: ### i) For the expression \( f(x) = x^2 + 6x - 27 \) 1. **Find the derivative**: \[ f'(x) = 2x + 6 \] 2. **Set the derivative to zero to find critical points**: \[ 2x + 6 = 0 \implies x = -3 \] 3. **Second derivative test**: \[ f''(x) = 2 \quad (\text{which is positive}) \] Since \( f''(x) > 0 \), \( f(x) \) has a minimum at \( x = -3 \). 4. **Calculate the minimum value**: \[ f(-3) = (-3)^2 + 6(-3) - 27 = 9 - 18 - 27 = -36 \] **Minimum value of \( f(x) \) is -36.** --- ### ii) For the expression \( f(x) = 3x^2 + 2x + 7 \) 1. **Find the derivative**: \[ f'(x) = 6x + 2 \] 2. **Set the derivative to zero**: \[ 6x + 2 = 0 \implies x = -\frac{1}{3} \] 3. **Second derivative test**: \[ f''(x) = 6 \quad (\text{which is positive}) \] Since \( f''(x) > 0 \), \( f(x) \) has a minimum at \( x = -\frac{1}{3} \). 4. **Calculate the minimum value**: \[ f\left(-\frac{1}{3}\right) = 3\left(-\frac{1}{3}\right)^2 + 2\left(-\frac{1}{3}\right) + 7 = 3\left(\frac{1}{9}\right) - \frac{2}{3} + 7 \] \[ = \frac{1}{3} - \frac{2}{3} + 7 = -\frac{1}{3} + 7 = \frac{20}{3} \] **Minimum value of \( f(x) \) is \( \frac{20}{3} \).** --- ### iii) For the expression \( f(x) = x^2 - 12x + 32 \) 1. **Find the derivative**: \[ f'(x) = 2x - 12 \] 2. **Set the derivative to zero**: \[ 2x - 12 = 0 \implies x = 6 \] 3. **Second derivative test**: \[ f''(x) = 2 \quad (\text{which is positive}) \] Since \( f''(x) > 0 \), \( f(x) \) has a minimum at \( x = 6 \). 4. **Calculate the minimum value**: \[ f(6) = 6^2 - 12 \cdot 6 + 32 = 36 - 72 + 32 = -4 \] **Minimum value of \( f(x) \) is -4.** --- ### iv) For the expression \( f(x) = 2x^2 + 3x + 1 \) 1. **Find the derivative**: \[ f'(x) = 4x + 3 \] 2. **Set the derivative to zero**: \[ 4x + 3 = 0 \implies x = -\frac{3}{4} \] 3. **Second derivative test**: \[ f''(x) = 4 \quad (\text{which is positive}) \] Since \( f''(x) > 0 \), \( f(x) \) has a minimum at \( x = -\frac{3}{4} \). 4. **Calculate the minimum value**: \[ f\left(-\frac{3}{4}\right) = 2\left(-\frac{3}{4}\right)^2 + 3\left(-\frac{3}{4}\right) + 1 \] \[ = 2\left(\frac{9}{16}\right) - \frac{9}{4} + 1 = \frac{18}{16} - \frac{36}{16} + \frac{16}{16} = \frac{18 - 36 + 16}{16} = \frac{-2}{16} = -\frac{1}{8} \] **Minimum value of \( f(x) \) is \( -\frac{1}{8} \).** --- ### Summary of Results: 1. Minimum of \( x^2 + 6x - 27 \) is -36. 2. Minimum of \( 3x^2 + 2x + 7 \) is \( \frac{20}{3} \). 3. Minimum of \( x^2 - 12x + 32 \) is -4. 4. Minimum of \( 2x^2 + 3x + 1 \) is \( -\frac{1}{8} \).
Doubtnut Promotions Banner Desktop LightDoubtnut Promotions Banner Desktop DarkDoubtnut Promotions Banner Mobile LightDoubtnut Promotions Banner Mobile Dark

Similar Questions

Explore conceptually related problems

Find the maximum or minimum values of the following expressions on R 2x + 5 – 3x^(2)

Find the maximum or minimum values of the following functions: (i) x^(3)-2x^(2)+x+3

Find the maximum or minimum values of the following expressions i) 2x -7 – 5x^(2) ii) 3x^(2)+2x+11 iii) ax^(2)+bx+a, a,b in R, a != 0 iv) x^(2)-x+7

Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6

For what value of x in R the following expressions are negative i) x^(2) - 5x - 6 ii) -7x^(2) + 8x - 9

Find the value of the following expressions, when x=-1 (i) 2x-7 (ii) -x+2 (iii) x^2+2x+1 (iv) 2x^2-x-2

Find the maximum and the minimum values, if any, of the following functions f(x)=3x^2+6x+8,x in R

Find the maximum and the minimum values, if any, of the following functions f(x)=3x^2+6x+8,x in R

For what values of x in R , the following expressions are negative i) -6x^(2)+2x -3 ii) 15+4x-3x^(2) iii) 2x^(2)+5x -3 iv) x^(2)-7x+10

Find the maximum and minimum values of the following functions. f(x)=(x^(3))/(3)-(x^(2))/(2)-6x+8

Recommended Questions
  1. Find the maximum or minimum values of the following expressions on R ...

    07:07

    |

  2. Find the value of the following expressions, when x=-1 (i) 2x-7 ...

    01:40

    |

  3. write the coefficient of x^(2) in each of the following (i)...

    01:49

    |

  4. Find the maximum or minimum values of the following functions: (i)x^...

    Text Solution

    |

  5. गुणनखंड ज्ञात कीजिए : (i) 12x^(2) -7x+1 " (ii) " 2x^(2)+7x+3...

    03:32

    |

  6. निम्नलिखित समीकरणों को हल कीजिय : 2x^2+5x+3=0 (ii) 2x^2-3x+1=0 (i...

    04:28

    |

  7. निम्नलिखित व्यंजकों के मान ज्ञात कीजिए जब x=-1 है (i) 2x-7 (ii)-x+2 ...

    03:11

    |

  8. Find the absolute maximum and absolute minimum values of the function ...

    05:03

    |

  9. Write the coefficient of x ^(2) in each of the following br> (i) 15 - ...

    02:52

    |

Home
Profile
|