Find the maximum or minimum values of the following expressions on R i) `x^(2) + 6x – 27` ii) `3x^(2) + 2x + 7` iii) `x^(2) - 12x + 32` iv) `2x^(2) + 3x + 1`
Text Solution
AI Generated Solution
The correct Answer is:
To find the maximum or minimum values of the given quadratic expressions, we will use the concept of derivatives. For a quadratic function \( f(x) = ax^2 + bx + c \), the vertex form gives us the maximum or minimum value depending on the sign of \( a \). If \( a > 0 \), the function has a minimum value; if \( a < 0 \), it has a maximum value.
### Step-by-step Solutions:
### i) For the expression \( f(x) = x^2 + 6x - 27 \)
1. **Find the derivative**:
\[
f'(x) = 2x + 6
\]
2. **Set the derivative to zero to find critical points**:
\[
2x + 6 = 0 \implies x = -3
\]
3. **Second derivative test**:
\[
f''(x) = 2 \quad (\text{which is positive})
\]
Since \( f''(x) > 0 \), \( f(x) \) has a minimum at \( x = -3 \).
4. **Calculate the minimum value**:
\[
f(-3) = (-3)^2 + 6(-3) - 27 = 9 - 18 - 27 = -36
\]
**Minimum value of \( f(x) \) is -36.**
---
### ii) For the expression \( f(x) = 3x^2 + 2x + 7 \)
1. **Find the derivative**:
\[
f'(x) = 6x + 2
\]
2. **Set the derivative to zero**:
\[
6x + 2 = 0 \implies x = -\frac{1}{3}
\]
3. **Second derivative test**:
\[
f''(x) = 6 \quad (\text{which is positive})
\]
Since \( f''(x) > 0 \), \( f(x) \) has a minimum at \( x = -\frac{1}{3} \).
4. **Calculate the minimum value**:
\[
f\left(-\frac{1}{3}\right) = 3\left(-\frac{1}{3}\right)^2 + 2\left(-\frac{1}{3}\right) + 7 = 3\left(\frac{1}{9}\right) - \frac{2}{3} + 7
\]
\[
= \frac{1}{3} - \frac{2}{3} + 7 = -\frac{1}{3} + 7 = \frac{20}{3}
\]
**Minimum value of \( f(x) \) is \( \frac{20}{3} \).**
---
### iii) For the expression \( f(x) = x^2 - 12x + 32 \)
1. **Find the derivative**:
\[
f'(x) = 2x - 12
\]
2. **Set the derivative to zero**:
\[
2x - 12 = 0 \implies x = 6
\]
3. **Second derivative test**:
\[
f''(x) = 2 \quad (\text{which is positive})
\]
Since \( f''(x) > 0 \), \( f(x) \) has a minimum at \( x = 6 \).
4. **Calculate the minimum value**:
\[
f(6) = 6^2 - 12 \cdot 6 + 32 = 36 - 72 + 32 = -4
\]
**Minimum value of \( f(x) \) is -4.**
---
### iv) For the expression \( f(x) = 2x^2 + 3x + 1 \)
1. **Find the derivative**:
\[
f'(x) = 4x + 3
\]
2. **Set the derivative to zero**:
\[
4x + 3 = 0 \implies x = -\frac{3}{4}
\]
3. **Second derivative test**:
\[
f''(x) = 4 \quad (\text{which is positive})
\]
Since \( f''(x) > 0 \), \( f(x) \) has a minimum at \( x = -\frac{3}{4} \).
4. **Calculate the minimum value**:
\[
f\left(-\frac{3}{4}\right) = 2\left(-\frac{3}{4}\right)^2 + 3\left(-\frac{3}{4}\right) + 1
\]
\[
= 2\left(\frac{9}{16}\right) - \frac{9}{4} + 1 = \frac{18}{16} - \frac{36}{16} + \frac{16}{16} = \frac{18 - 36 + 16}{16} = \frac{-2}{16} = -\frac{1}{8}
\]
**Minimum value of \( f(x) \) is \( -\frac{1}{8} \).**
---
### Summary of Results:
1. Minimum of \( x^2 + 6x - 27 \) is -36.
2. Minimum of \( 3x^2 + 2x + 7 \) is \( \frac{20}{3} \).
3. Minimum of \( x^2 - 12x + 32 \) is -4.
4. Minimum of \( 2x^2 + 3x + 1 \) is \( -\frac{1}{8} \).
Similar Questions
Explore conceptually related problems
Find the maximum or minimum values of the following expressions on R 2x + 5 – 3x^(2)
Find the maximum or minimum values of the following functions: (i) x^(3)-2x^(2)+x+3
Find the maximum or minimum values of the following expressions i) 2x -7 – 5x^(2) ii) 3x^(2)+2x+11 iii) ax^(2)+bx+a, a,b in R, a != 0 iv) x^(2)-x+7
Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6
For what value of x in R the following expressions are negative i) x^(2) - 5x - 6 ii) -7x^(2) + 8x - 9
Find the value of the following expressions, when x=-1 (i) 2x-7 (ii) -x+2 (iii) x^2+2x+1 (iv) 2x^2-x-2
Find the maximum and the minimum values, if any, of the following functions f(x)=3x^2+6x+8,x in R
Find the maximum and the minimum values, if any, of the following functions f(x)=3x^2+6x+8,x in R
For what values of x in R , the following expressions are negative i) -6x^(2)+2x -3 ii) 15+4x-3x^(2) iii) 2x^(2)+5x -3 iv) x^(2)-7x+10
Find the maximum and minimum values of the following functions. f(x)=(x^(3))/(3)-(x^(2))/(2)-6x+8