Home
Class 12
MATHS
If alpha , beta , gamma are the root...

If ` alpha , beta , gamma ` are the roots of ` x^3 + 2x^2 + 3x +8=0` then ` ( alpha + beta ) ( beta + gamma) ( gamma + alpha )`=

A

`-4`

B

`4`

C

`-2`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( ( \alpha + \beta )( \beta + \gamma )( \gamma + \alpha ) \) given that \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 + 2x^2 + 3x + 8 = 0 \). ### Step 1: Identify the coefficients The polynomial can be compared to the general form \( ax^3 + bx^2 + cx + d = 0 \). Here, we have: - \( a = 1 \) - \( b = 2 \) - \( c = 3 \) - \( d = 8 \) ### Step 2: Use Vieta's formulas According to Vieta's formulas for a cubic equation: - The sum of the roots \( \alpha + \beta + \gamma = -\frac{b}{a} = -\frac{2}{1} = -2 \) - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{3}{1} = 3 \) - The product of the roots \( \alpha\beta\gamma = -\frac{d}{a} = -\frac{8}{1} = -8 \) ### Step 3: Express \( ( \alpha + \beta )( \beta + \gamma )( \gamma + \alpha ) \) We can rewrite the expression: \[ ( \alpha + \beta )( \beta + \gamma )( \gamma + \alpha ) = ( -\gamma )( -\alpha )( -\beta ) = -(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha) + \alpha\beta\gamma \] ### Step 4: Substitute the known values Now, substituting the values from Vieta's formulas: \[ ( \alpha + \beta )( \beta + \gamma )( \gamma + \alpha ) = (-2)(3) + (-8) \] ### Step 5: Calculate the result Calculating this gives: \[ = -6 - 8 = -14 \] ### Step 6: Final expression Thus, we have: \[ ( \alpha + \beta )( \beta + \gamma )( \gamma + \alpha ) = -14 \] However, we need to check our calculations as the options provided are different. Let's re-evaluate the expression \( ( \alpha + \beta )( \beta + \gamma )( \gamma + \alpha ) \) directly. ### Step 7: Re-evaluate the expression Using the identity: \[ ( \alpha + \beta )( \beta + \gamma )( \gamma + \alpha ) = (\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha) - \alpha\beta\gamma \] Substituting the values: \[ = (-2)(3) - (-8) = -6 + 8 = 2 \] ### Conclusion Thus, the final answer is: \[ ( \alpha + \beta )( \beta + \gamma )( \gamma + \alpha ) = 2 \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 prove that ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =r-pq

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha , beta , gamma are the roots of x^3 + px^2 + qx + r=0 form the equation whose roots are alpha beta , beta gamma , gamma alpha

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta , gamma are the roots of x^3 -7x + 6 =0 the equation whose roots are alpha + beta , beta + gamma , gamma + alpha is

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =