Home
Class 12
MATHS
If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(...

If `f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo` then

A

a) `log_(e )((1+x)/(1-x))`

B

b) `log_(e )(1+x) `

C

c) `(1+x)log_(e )(1+x)`- x

D

d) `log_(e )(1-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given: \[ f(x) = \frac{x^2}{1 \cdot 2} - \frac{x^3}{2 \cdot 3} + \frac{x^4}{3 \cdot 4} - \frac{x^5}{4 \cdot 5} + \ldots \] ### Step 1: Recognize the Series The series can be recognized as a power series. The general term appears to be: \[ (-1)^{n} \frac{x^{n+1}}{n(n+1)} \] for \( n = 1, 2, 3, \ldots \) ### Step 2: Relate to Logarithmic Functions We know the Taylor series expansions for logarithmic functions: 1. For \( \log(1+x) \): \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] 2. For \( \log(1-x) \): \[ \log(1-x) = -\left( x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \ldots \right) \] ### Step 3: Combine the Logarithmic Functions We can combine these two logarithmic functions: \[ \log(1+x) - \log(1-x) = \log\left(\frac{1+x}{1-x}\right) \] This results in: \[ \log(1+x) - \log(1-x) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots\right) \] ### Step 4: Find the Expression for \( f(x) \) From the above, we can see that: \[ f(x) = 1 + x \log(1+x) - x \] This means we can express \( f(x) \) as: \[ f(x) = 1 + x \log(1+x) - x \] ### Step 5: Verify the Result To verify, we can differentiate \( f(x) \) or check the series expansion of \( 1 + x \log(1+x) - x \) to ensure it matches the original series. ### Final Result Thus, we conclude that: \[ f(x) = 1 + x \log(1+x) - x \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5) and let g (x) = f ^(-1) (x). Find g''(o).

Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5) and let g (x) = f ^(-1) (x). Find g'''(o).

The series expansion of log[(1 + x)^((1 + x))(1-x)^(1-x)] is (1) 2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (2) [(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (3) 2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...] (4) 2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]

Let S=x-(x^(3))/(3!)+(x^(5))/(5!) … and C=1-(x^(2))/(2!)+(x^(4))/(4!) Then,

If the area bounded by y=f(x), x=(1)/(2),x=(sqrt3)/(2) and the X-axis is A sq units where f(x)= x+(2)/(3)x^(3)+(2)/(3).(4)/(5)x^(5)+(2)/(3).(4)/(5).(6)/(7)x^(7) +...oo,|x|lt1, Then the value of [4A] is (where[.] is G.I.F)

Assertion (A) : The coefficient of x^(5) in the expansion log_(e ) ((1+x)/(1-x)) is (2)/(5) Reason (R ) : The equality log((1+x)/(1-x))=2[x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo] is valid for |x| lt 1

If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))/(5) + ….oo))/((x + (x^(3))/(3) + (x^(5))/(5) + ……oo)) =

Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g be inverse function of f and h (x)= (a+bx ^(3//2))/(x ^(5//4)),h '(5)=0, then (a^(2))/(5b^(2) g'((-7)/(6)))=

Assertion (A) : x + x^(2)/(1!) + x^(3) /(2!) + (x^4)/(3!) + .....+ oo = f(x) Then the series f(1), f(2) ,f(3) ,f(4) ... Are in G.P . Reason (R) : In the above series f'(x) = e^(x) (x+1)

1+(omegax)/(1!) +(omega^2x^2)/(2!)+(omega^3x^3)/(3!)+(omega^4x^4)/(4!)+(omega^5x^5)/(5!)+ .....oo =