Home
Class 11
PHYSICS
The cross product of the vectors (2i - 3...

The cross product of the vectors `(2i - 3j + 4k) and (I + 4j -5k)` is

A

`-hati-14hatj+11hatk`

B

`hati+14hatj+11hatk`

C

`-hati+14hatj+11hatk`

D

`-hati+14hatj+5hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cross product of the vectors \( \mathbf{A} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k} \) and \( \mathbf{B} = \mathbf{i} + 4\mathbf{j} - 5\mathbf{k} \), we can use the determinant method. Here’s a step-by-step solution: ### Step 1: Set up the determinant We will set up a 3x3 determinant where the first row consists of the unit vectors \( \mathbf{i}, \mathbf{j}, \mathbf{k} \), the second row consists of the components of vector \( \mathbf{A} \), and the third row consists of the components of vector \( \mathbf{B} \). \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 4 \\ 1 & 4 & -5 \end{vmatrix} \] ### Step 2: Calculate the determinant To calculate the determinant, we will expand it using the first row: \[ \mathbf{A} \times \mathbf{B} = \mathbf{i} \begin{vmatrix} -3 & 4 \\ 4 & -5 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2 & 4 \\ 1 & -5 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now, we will calculate each of the 2x2 determinants: 1. For \( \mathbf{i} \): \[ \begin{vmatrix} -3 & 4 \\ 4 & -5 \end{vmatrix} = (-3)(-5) - (4)(4) = 15 - 16 = -1 \] 2. For \( \mathbf{j} \): \[ \begin{vmatrix} 2 & 4 \\ 1 & -5 \end{vmatrix} = (2)(-5) - (4)(1) = -10 - 4 = -14 \] 3. For \( \mathbf{k} \): \[ \begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} = (2)(4) - (-3)(1) = 8 + 3 = 11 \] ### Step 4: Substitute back into the expression Now substituting back into the expression for the cross product: \[ \mathbf{A} \times \mathbf{B} = \mathbf{i}(-1) - \mathbf{j}(-14) + \mathbf{k}(11) \] This simplifies to: \[ \mathbf{A} \times \mathbf{B} = -\mathbf{i} + 14\mathbf{j} + 11\mathbf{k} \] ### Final Result Thus, the cross product of the vectors \( \mathbf{A} \) and \( \mathbf{B} \) is: \[ \mathbf{A} \times \mathbf{B} = -\mathbf{i} + 14\mathbf{j} + 11\mathbf{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The unit vector parallel to the resultant of the vectors A = 4i+3j + 6k and B = -i + 3j-8k is

The scalar product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vector 2 hat i+4 hat j-5 hat k and lambda hat i+2 hat j+3 hat k is equal to one. Find the value of lambda .

The scalar product of the vector hat i+\ hat j+\ hat k\ with the unit vector along the sum of vectors 2 hat i+\ 4 hat j-5 hat k . and lambda hat i+\ 2 hat j+\ 3 hat k\ is equal to one. Find the value of lambda .

The magnitude of the vector product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vectors 2 hat i+4 hat j-\ 5 hat k and lambda hat i+2 hat j+3 hat k is equal to sqrt(2) . Find the value of lambda .

Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)= (hat(i)-2hat(j)+3hat(k)) .

Find a vector of magnitude 49, which is perpendicular to both the vectors 2 hat i+3 hat j+6 hat k and 3 hat i-6 hat j+2 hat k . Find a vector whose length is 3 and which is perpendicular to the vector vec a=3 hat i+ hat j-4 hat k and vec b=6 hat i+5 hat j-2 hat k .

Find the value of n such that the vectors 4 hat(i) + 3hat(j) - 7hat(k) and 5 hat(i) + 2hat(j) - nhat(k) may be orthogonal .

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .