Home
Class 14
MATHS
If sin theta + sin^(2) theta =1, then wh...

If `sin theta + sin^(2) theta =1`, then what is the value of `( cos^(12) theta + 3 cos^(10) theta + 3 cos^(8) theta + cos^(6) theta - 1)`?

A

`-1`

B

`0`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin \theta + \sin^2 \theta = 1 \) and find the value of \( \cos^{12} \theta + 3 \cos^{10} \theta + 3 \cos^{8} \theta + \cos^{6} \theta - 1 \), we can follow these steps: ### Step 1: Solve for \( \sin \theta \) From the equation \( \sin \theta + \sin^2 \theta = 1 \), we can rearrange it: \[ \sin^2 \theta + \sin \theta - 1 = 0 \] This is a quadratic equation in terms of \( \sin \theta \). ### Step 2: Use the quadratic formula Using the quadratic formula \( \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = 1, c = -1 \): \[ \sin \theta = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] Since \( \sin \theta \) must be between -1 and 1, we take the positive root: \[ \sin \theta = \frac{-1 + \sqrt{5}}{2} \] ### Step 3: Find \( \cos^2 \theta \) Using the Pythagorean identity \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ \sin^2 \theta = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Thus, \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 4: Substitute \( x = \cos^2 \theta \) Let \( x = \cos^2 \theta \). We need to evaluate: \[ x^6 + 3x^5 + 3x^4 + x^3 - 1 \] This can be factored as: \[ x^6 + 3x^5 + 3x^4 + x^3 = (x^2 + 1)^3 - 1 \] ### Step 5: Substitute \( x \) Now substituting \( x = \frac{-1 + \sqrt{5}}{2} \): \[ x^2 + 1 = \frac{-1 + \sqrt{5}}{2} + 1 = \frac{-1 + \sqrt{5} + 2}{2} = \frac{1 + \sqrt{5}}{2} \] Now we calculate: \[ \left(\frac{1 + \sqrt{5}}{2}\right)^3 - 1 \] ### Step 6: Calculate the cube Calculating \( \left(\frac{1 + \sqrt{5}}{2}\right)^3 \): \[ \left(\frac{1 + \sqrt{5}}{2}\right)^3 = \frac{(1 + \sqrt{5})^3}{8} = \frac{1 + 3\sqrt{5} + 3 \cdot 5 + \sqrt{5}^3}{8} = \frac{1 + 3\sqrt{5} + 15 + 5\sqrt{5}}{8} = \frac{16 + 8\sqrt{5}}{8} = 2 + \sqrt{5} \] Thus, \[ \left(\frac{1 + \sqrt{5}}{2}\right)^3 - 1 = (2 + \sqrt{5}) - 1 = 1 + \sqrt{5} \] ### Final Step: Conclusion The final value is: \[ \cos^{12} \theta + 3 \cos^{10} \theta + 3 \cos^{8} \theta + \cos^{6} \theta - 1 = 1 + \sqrt{5} - 1 = \sqrt{5} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If sin^(8)theta+cos^(8)theta-1=0 then what is the value of cos^(2)theta sin^(2)theta

If sin theta +sin^2 theta=1 , then the value of cos^12 theta +3cos^10 theta +3cos^8 theta+ cos^6 theta-1 is- यदि sin theta +sin^2 theta=1 तो cos^12 theta +3cos^10 theta +3cos^8 theta+ cos^6 theta-1 का मान क्या होगा?

Knowledge Check

  • The value of 2(sin^(6) theta + cos^(6) theta) - 3 (sin^(4) theta + cos^(4) theta) + 1 is

    A
    1
    B
    0
    C
    5
    D
    3
  • If 5 cos theta - 12 sin theta = 0 , then what is the value of ( 1+ sin theta + cos theta )/( 1 - sin theta + cos theta) ?

    A
    `5//4`
    B
    `5//2`
    C
    `3//2`
    D
    `3//4`
  • If sin theta + sin^(2) theta + sin^(3) theta =1 , then find value of cos^(6) theta + 4 cos^(4) theta + 8 cos^(2) theta यदि sin theta + sin^(2) theta + sin^(3) theta =1 , तब cos^(6) theta + 4 cos^(4) theta + 8 cos^(2) theta का मान होगा -

    A
    2
    B
    4
    C
    0
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If sin theta+sin^(2)theta=1 find the value of cos^(12)theta+3cos^(10)theta+3cos^(8)theta+cos^(6)theta+2cos^(4)theta+2cos^(2)theta-2

    What is the value of sin^6 theta + cos^6 theta + 3sin^2 theta cos^2 theta ?

    Prove that: sin^(6) theta + cos^(6) theta =1 - 3 sin^(2) theta cos^(2) theta

    If sin theta + sin^(2) theta + sin^(3) theta =1 , then cos^(6) theta - 4 cos^(4) theta + 8 cos ^(2) theta =

    The value of sin^6 theta+ cos^6 theta + 3 cos^2 theta sin^2 theta is