Home
Class 11
MATHS
Evaluate the limits, if exist lim(xrarr0...

Evaluate the limits, if exist `lim_(xrarr0) (log(1+x^3))/(sin^3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\log(1+x^3)}{\sin^3 x}, \] we will follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = 0 \) into the expression: \[ \log(1 + 0^3) = \log(1) = 0, \] and \[ \sin^3(0) = 0^3 = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). **Hint:** When you encounter the \( \frac{0}{0} \) form, you can apply L'Hôpital's Rule or manipulate the expression to resolve the indeterminacy. ### Step 2: Rewrite the limit We can rewrite the limit using known limits. We know that: \[ \lim_{x \to 0} \frac{\log(1+x)}{x} = 1, \] and \[ \lim_{x \to 0} \frac{\sin x}{x} = 1. \] We can manipulate our limit as follows: \[ \lim_{x \to 0} \frac{\log(1+x^3)}{\sin^3 x} = \lim_{x \to 0} \frac{\log(1+x^3)}{x^3} \cdot \frac{x^3}{\sin^3 x}. \] **Hint:** Break down the limit into parts that can be evaluated separately. ### Step 3: Evaluate the first part of the limit Now we evaluate the first part: \[ \lim_{x \to 0} \frac{\log(1+x^3)}{x^3}. \] Using the known limit: \[ \lim_{x \to 0} \frac{\log(1+x^3)}{x^3} = 1. \] **Hint:** Substitute \( u = x^3 \) to convert the limit if necessary. ### Step 4: Evaluate the second part of the limit Next, we evaluate the second part: \[ \lim_{x \to 0} \frac{x^3}{\sin^3 x} = \left( \lim_{x \to 0} \frac{x}{\sin x} \right)^3. \] Using the known limit: \[ \lim_{x \to 0} \frac{x}{\sin x} = 1, \] we find: \[ \lim_{x \to 0} \frac{x^3}{\sin^3 x} = 1^3 = 1. \] **Hint:** Remember that if \( \lim_{x \to 0} \frac{x}{\sin x} = 1 \), then raising it to any power will still yield 1. ### Step 5: Combine the results Now we combine the results from both parts: \[ \lim_{x \to 0} \frac{\log(1+x^3)}{\sin^3 x} = 1 \cdot 1 = 1. \] ### Final Answer Thus, the limit is \[ \boxed{1}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{\log(1+x^3)}{\sin^3 x}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise EXERCISE 13.2|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limits,if exist lim_(x rarr0)(log_(e)(1+2x))/(x)

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/(sin^(2)2x)

lim_(xrarr0) (sin 3x)/x

Evaluate the following limits: lim_(xrarr0)((1-cosx))/(sin^(2)x)

lim_(xrarr0) (sin 3 x)/(2x)

Evaluate the following limits: lim_(xrarr0)((sin5x-sin3x))/(sinx)

Evaluate the following limits: lim_(xrarr0)((sin2x+3x))/((2x+sin3x))

Evaluate the following limits: lim_(xrarr0)((tanx-sinx))/(sin^(3)x)

lim_(xrarr0)ln(tan(pi/4+2x))/(sin3x)=?

Evaluate the following limits: lim_(xrarr0)(sin(x//4))/(x)