Home
Class 12
MATHS
Find the value of (cos^(2)66^(@)-sin^(2)...

Find the value of `(cos^(2)66^(@)-sin^(2)6^(@))(cos^(2)48^(@)-sin^(2)12^(@))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ (cos^2 66^\circ - sin^2 6^\circ)(cos^2 48^\circ - sin^2 12^\circ) \] ### Step 1: Use the identity \( \cos^2 A - \sin^2 B = \cos(A + B) \cos(A - B) \) For the first part \( \cos^2 66^\circ - \sin^2 6^\circ \): \[ \cos^2 66^\circ - \sin^2 6^\circ = \cos(66^\circ + 6^\circ) \cos(66^\circ - 6^\circ) \] Calculating the angles: \[ \cos(66^\circ + 6^\circ) = \cos 72^\circ \] \[ \cos(66^\circ - 6^\circ) = \cos 60^\circ \] Thus, \[ \cos^2 66^\circ - \sin^2 6^\circ = \cos 72^\circ \cos 60^\circ \] ### Step 2: Calculate \( \cos 60^\circ \) We know: \[ \cos 60^\circ = \frac{1}{2} \] So, \[ \cos^2 66^\circ - \sin^2 6^\circ = \cos 72^\circ \cdot \frac{1}{2} \] ### Step 3: For the second part \( \cos^2 48^\circ - \sin^2 12^\circ \) Using the same identity: \[ \cos^2 48^\circ - \sin^2 12^\circ = \cos(48^\circ + 12^\circ) \cos(48^\circ - 12^\circ) \] Calculating the angles: \[ \cos(48^\circ + 12^\circ) = \cos 60^\circ \] \[ \cos(48^\circ - 12^\circ) = \cos 36^\circ \] Thus, \[ \cos^2 48^\circ - \sin^2 12^\circ = \cos 60^\circ \cos 36^\circ \] ### Step 4: Substitute back into the expression Now substituting both parts back into the original expression: \[ (cos^2 66^\circ - sin^2 6^\circ)(cos^2 48^\circ - sin^2 12^\circ) = \left(\cos 72^\circ \cdot \frac{1}{2}\right) \left(\cos 60^\circ \cdot \cos 36^\circ\right) \] ### Step 5: Substitute the known values We already know: \[ \cos 60^\circ = \frac{1}{2} \] So we have: \[ = \left(\cos 72^\circ \cdot \frac{1}{2}\right) \left(\frac{1}{2} \cdot \cos 36^\circ\right) \] \[ = \frac{1}{4} \cos 72^\circ \cos 36^\circ \] ### Step 6: Use the identity \( \cos 72^\circ = \sin 18^\circ \) We know: \[ \cos 72^\circ = \sin 18^\circ \] Thus: \[ = \frac{1}{4} \sin 18^\circ \cos 36^\circ \] ### Step 7: Calculate \( \sin 18^\circ \) and \( \cos 36^\circ \) Using known values: \[ \sin 18^\circ = \frac{\sqrt{5}-1}{4}, \quad \cos 36^\circ = \frac{\sqrt{5}+1}{4} \] ### Step 8: Final Calculation Substituting these values: \[ = \frac{1}{4} \cdot \frac{\sqrt{5}-1}{4} \cdot \frac{\sqrt{5}+1}{4} \] \[ = \frac{(\sqrt{5}-1)(\sqrt{5}+1)}{64} \] \[ = \frac{5-1}{64} = \frac{4}{64} = \frac{1}{16} \] ### Final Answer Thus, the value of the expression is: \[ \frac{1}{16} \]

To solve the problem, we need to find the value of the expression: \[ (cos^2 66^\circ - sin^2 6^\circ)(cos^2 48^\circ - sin^2 12^\circ) \] ### Step 1: Use the identity \( \cos^2 A - \sin^2 B = \cos(A + B) \cos(A - B) \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.6|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.7|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.4|26 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

cos^(2)48^(0)-sin^(2)12^(0) is

Find the value of cos42^(@)-sin48^(@) .

Knowledge Check

  • The value of cos^(2)48^(@)-sin^(2)12^(@) is

    A
    `(sqrt(5)+1)/(8)`
    B
    `(sqrt(5)-1)/(8)`
    C
    `(sqrt(5)+1)/(5)`
    D
    `(sqrt(5)+1)/(2sqrt(2))`
  • Similar Questions

    Explore conceptually related problems

    Find the value of (cos48^(@)-sin42^(@))

    Find the value of (cos^(2)20^(@)+cos^(2)70^(@))/(sin^(2)59^(@)+sin^(2)31^(@)) .

    Find the value of [(sin^(2)22^(@)+sin^(2)68^(@))/(cos^(2)22^(@)+cos^(2)68^(@))+sin^(2)63^(@)+cos63^(@)sin27^(@)]

    Find the value of cos48^(@)-sin42^(@) .

    Find the value of (a) sin(pi)/(10).sin(13pi)/(10) (b) cos^(2)48^(@)-sin^(2) 12^(@)

    Find the value of sin^(2) 48^(@) + cos^(2) 48^(@) .

    Find the values of sin48^(@)-cos42^(@)