Home
Class 12
MATHS
If 3 sin beta=sin(2alpha+beta), then tan...

If `3 sin beta=sin(2alpha+beta)`, then `tan (alpha+beta)-2 tan alpha` is

A

independent of `alpha`

B

independent of `beta`

C

dependent of both `alpha` and `beta`.

D

independent of both `alpha` and `beta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \sin \beta = \sin(2\alpha + \beta)\) and find the value of \( \tan(\alpha + \beta) - 2 \tan \alpha\), we can follow these steps: ### Step 1: Rewrite the expression for \( \tan(\alpha + \beta) \) Using the tangent addition formula: \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \] ### Step 2: Substitute the sine and cosine formulas We can express \( \sin(\alpha + \beta) \) and \( \cos(\alpha + \beta) \) using the sine and cosine addition formulas: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] ### Step 3: Substitute into the tangent formula Now substituting these into the tangent formula: \[ \tan(\alpha + \beta) = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} \] ### Step 4: Write \( \tan(\alpha + \beta) - 2 \tan \alpha \) Now, we need to express \( \tan \alpha \): \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \] Thus, \[ 2 \tan \alpha = \frac{2 \sin \alpha}{\cos \alpha} \] Now we can write: \[ \tan(\alpha + \beta) - 2 \tan \alpha = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} - \frac{2 \sin \alpha}{\cos \alpha} \] ### Step 5: Combine the fractions To combine these fractions, we need a common denominator: \[ = \frac{(\sin \alpha \cos \beta + \cos \alpha \sin \beta) \cos \alpha - 2 \sin \alpha (\cos \alpha \cos \beta - \sin \alpha \sin \beta)}{\cos \alpha (\cos \alpha \cos \beta - \sin \alpha \sin \beta)} \] ### Step 6: Simplify the numerator Expanding the numerator: \[ = \sin \alpha \cos \beta \cos \alpha + \cos \alpha \sin \beta \cos \alpha - 2 \sin \alpha \cos \alpha \cos \beta + 2 \sin^2 \alpha \sin \beta \] ### Step 7: Factor out common terms Now, we can factor out common terms from the numerator: \[ = \sin \beta \cos^2 \alpha + \sin \alpha \cos \beta \cos \alpha - 2 \sin \alpha \cos \alpha \cos \beta + 2 \sin^2 \alpha \sin \beta \] ### Step 8: Use the given equation Since we know that \(3 \sin \beta = \sin(2\alpha + \beta)\), we can use this to simplify further. ### Step 9: Set the expression to zero Using the given equation, we can set the expression to zero: \[ 3 \sin \beta - \sin(2\alpha + \beta) = 0 \] ### Conclusion Thus, we find that: \[ \tan(\alpha + \beta) - 2 \tan \alpha = 0 \] This means that the value is independent of both \( \alpha \) and \( \beta \).

To solve the equation \(3 \sin \beta = \sin(2\alpha + \beta)\) and find the value of \( \tan(\alpha + \beta) - 2 \tan \alpha\), we can follow these steps: ### Step 1: Rewrite the expression for \( \tan(\alpha + \beta) \) Using the tangent addition formula: \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Matrix Match Type )|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Single)|100 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If 3sin beta=sin(2 alpha+beta) then tan(alpha+beta)-2tan alpha is (a)independent of alpha (bindependent of beta (c)dependent of both alpha and beta( d)independent of both alpha and beta

If 2tan alpha=3tan beta then tan(alpha-beta)=

Knowledge Check

  • If sin (alpha + beta)=1, sin (alpha- beta)= (1)/(2) , then tan (alpha + 2beta) tan (2alpha + beta) =

    A
    `-1`
    B
    0
    C
    none
    D
    1
  • If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

    A
    1
    B
    2
    C
    3
    D
    4
  • If tan(2alpha+beta)=x & tan(alpha+2beta)=y , then [ tan3(alpha+beta)]. [ tan(alpha-beta)] is equal to (wherever defined)

    A
    `(x^(2)+y^(2))/(1-x^(2)y^(2))`
    B
    `(x^(2)-y^(2))/(1+x^(2)y^(2))`
    C
    `(x^(2)+y^(2))/(1+x^(2)y^(2))`
    D
    `(x^(2)-y^(2))/(1-x^(2)y^(2))`
  • Similar Questions

    Explore conceptually related problems

    If sin beta = 1/5 sin(2alpha +beta) , show that tan(alpha +beta) = 3/2 tan alpha .

    If 5sin alpha=3sin(alpha+2 beta)!=0, then tan(alpha+beta) is equal to

    If 5sin alpha=3(alpha+2 beta)!=0, then tan(alpha+beta) is equal to

    If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) then tan(alpha+2 beta)tan(2 alpha+beta)=

    Suppose alpha, beta gt 0 and alpha+2beta=pi//2 then tan(alpha+beta)-2 tan alpha-tan beta is equal to: