Home
Class 12
MATHS
Solve sin^(2) theta-cos theta=1/4, 0 le ...

Solve `sin^(2) theta-cos theta=1/4, 0 le theta le 2pi`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^2 \theta - \cos \theta = \frac{1}{4} \) in the interval \( 0 \leq \theta \leq 2\pi \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \sin^2 \theta - \cos \theta = \frac{1}{4} \] Using the Pythagorean identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can substitute for \( \sin^2 \theta \): \[ 1 - \cos^2 \theta - \cos \theta = \frac{1}{4} \] ### Step 2: Rearrange the equation Next, we rearrange the equation to isolate terms: \[ 1 - \cos^2 \theta - \cos \theta - \frac{1}{4} = 0 \] This simplifies to: \[ -\cos^2 \theta - \cos \theta + \frac{3}{4} = 0 \] Multiplying through by -1 gives: \[ \cos^2 \theta + \cos \theta - \frac{3}{4} = 0 \] ### Step 3: Use the quadratic formula This is a quadratic equation in terms of \( \cos \theta \). We can let \( x = \cos \theta \) and rewrite it as: \[ x^2 + x - \frac{3}{4} = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = 1, c = -\frac{3}{4} \): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot -\frac{3}{4}}}{2 \cdot 1} \] \[ x = \frac{-1 \pm \sqrt{1 + 3}}{2} \] \[ x = \frac{-1 \pm \sqrt{4}}{2} \] \[ x = \frac{-1 \pm 2}{2} \] ### Step 4: Solve for \( x \) Calculating the two possible values: 1. \( x = \frac{1}{2} \) 2. \( x = -\frac{3}{2} \) (This value is not valid since \( \cos \theta \) must be in the range \([-1, 1]\)) Thus, we have: \[ \cos \theta = \frac{1}{2} \] ### Step 5: Find \( \theta \) Now, we find the angles \( \theta \) for which \( \cos \theta = \frac{1}{2} \) in the interval \( 0 \leq \theta \leq 2\pi \): \[ \theta = \frac{\pi}{3}, \quad \text{and} \quad \theta = \frac{5\pi}{3} \] ### Final Solution The solutions to the equation \( \sin^2 \theta - \cos \theta = \frac{1}{4} \) in the interval \( 0 \leq \theta \leq 2\pi \) are: \[ \theta = \frac{\pi}{3}, \quad \frac{5\pi}{3} \]

To solve the equation \( \sin^2 \theta - \cos \theta = \frac{1}{4} \) in the interval \( 0 \leq \theta \leq 2\pi \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \sin^2 \theta - \cos \theta = \frac{1}{4} \] Using the Pythagorean identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can substitute for \( \sin^2 \theta \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

sin^2 theta - cos theta = 1/4, 0 gt = theta le 2 pi

Solve sin^2 theta- cos theta =1/4 " for " theta and write the value of theta in the interval 0 le theta le 2 pi

Knowledge Check

  • If 2 sin^(2) theta = 3 cos theta," where "0 le theta le 2 pi , then find the vaue of theta .

    A
    `(2 pi )/(3), (5 pi)/(3)`
    B
    `(pi)/(3), (5 pi)/(3)`
    C
    `(5 pi)/(3), (4 pi)/(3)`
    D
    None of these
  • If 2 sin^2 theta = 3cos theta, 0 le theta le 2 pi, theta =

    A
    `pi//6, 5pi//6`
    B
    `pi//3, 2pi//3`
    C
    `pi//3, 5pi//3`
    D
    `pi//2, pi`
  • The equation x=a cos theta +b sin theta and y=a sin theta-b cos theta, 0 le theta le 2pi together represent

    A
    parabola
    B
    straight line
    C
    ellipse
    D
    circle
  • Similar Questions

    Explore conceptually related problems

    If A= sin^(2)theta + cos^(4)theta , where 0 le theta le pi/2 , then which one of the following is correct ?

    Sum of the root of the equation 2sin^(2)theta +sin^(2)2 theta =2, 0 le theta le pi//2 is

    The number of solution of sec^(2) theta + cosec^(2) theta+2 cosec^(2) theta=8, 0 le theta le pi//2 is

    Sum of the root of the equation 2 sin^2 theta + sin^2 2theta =2, 0 le theta le pi//2 is

    If cos^2 theta - sin^2 theta = 1/3 , where 0 le theta le pi/2 , then the value of cos^4 theta - sin^4 theta is