Home
Class 12
MATHS
The value of cos 65^(@)cos 55^(@)cos5^(@...

The value of `cos 65^(@)cos 55^(@)cos5^(@)` is

A

`(sqrt(3)+1)/(8sqrt(2))`

B

`(sqrt(3)-1)/(8sqrt(2))`

C

`(sqrt(3)+1)/(4sqrt(2))`

D

`(sqrt(3)-1)/(4sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos 65^\circ \cos 55^\circ \cos 5^\circ \), we can use trigonometric identities to simplify the expression. Here’s a step-by-step solution: ### Step 1: Multiply by 2 and divide by 2 We start by rewriting the expression: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \frac{1}{2} \cdot 2 \cos 65^\circ \cos 55^\circ \cos 5^\circ \] ### Step 2: Use the product-to-sum identities We can use the product-to-sum identities to simplify \( 2 \cos A \cos B \): \[ 2 \cos A \cos B = \cos(A + B) + \cos(A - B) \] Let \( A = 65^\circ \) and \( B = 55^\circ \): \[ 2 \cos 65^\circ \cos 55^\circ = \cos(65^\circ + 55^\circ) + \cos(65^\circ - 55^\circ) \] Calculating the angles: \[ 65^\circ + 55^\circ = 120^\circ \quad \text{and} \quad 65^\circ - 55^\circ = 10^\circ \] Thus, we have: \[ 2 \cos 65^\circ \cos 55^\circ = \cos 120^\circ + \cos 10^\circ \] ### Step 3: Substitute back into the equation Now substituting back, we get: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \frac{1}{2} \left( \cos 120^\circ + \cos 10^\circ \right) \cos 5^\circ \] ### Step 4: Calculate \( \cos 120^\circ \) We know that: \[ \cos 120^\circ = -\frac{1}{2} \] So, substituting this value in: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \frac{1}{2} \left( -\frac{1}{2} + \cos 10^\circ \right) \cos 5^\circ \] ### Step 5: Simplify further This simplifies to: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \frac{1}{2} \left( -\frac{1}{2} \cos 5^\circ + \cos 10^\circ \cos 5^\circ \right) \] ### Step 6: Use product-to-sum again Now, we apply the product-to-sum identity again on \( \cos 10^\circ \cos 5^\circ \): \[ 2 \cos 10^\circ \cos 5^\circ = \cos(10^\circ + 5^\circ) + \cos(10^\circ - 5^\circ) = \cos 15^\circ + \cos 5^\circ \] Thus: \[ \cos 10^\circ \cos 5^\circ = \frac{1}{2} (\cos 15^\circ + \cos 5^\circ) \] ### Step 7: Substitute back Substituting this back gives: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \frac{1}{2} \left( -\frac{1}{2} \cos 5^\circ + \frac{1}{2} (\cos 15^\circ + \cos 5^\circ) \right) \] This simplifies to: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \frac{1}{4} \cos 15^\circ \] ### Final Result Thus, the value of \( \cos 65^\circ \cos 55^\circ \cos 5^\circ \) is: \[ \frac{1}{4} \cos 15^\circ \]

To find the value of \( \cos 65^\circ \cos 55^\circ \cos 5^\circ \), we can use trigonometric identities to simplify the expression. Here’s a step-by-step solution: ### Step 1: Multiply by 2 and divide by 2 We start by rewriting the expression: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \frac{1}{2} \cdot 2 \cos 65^\circ \cos 55^\circ \cos 5^\circ \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|519 Videos

Similar Questions

Explore conceptually related problems

The value of (sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)27^(@)-cos ec^(2)20^(@))

The value of (sin55^(@)-cos55^(@))/(sin10^(@)) is

Knowledge Check

  • The value of (sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)70^(@)-cosec^(2)20^(@))

    A
    `-1`
    B
    0
    C
    1
    D
    2
  • cos175^(@)+cos65^(@)+cos55^(@)=?

    A
    2
    B
    0
    C
    1
    D
    None of these
  • find cos175^(@)+cos65^(@)+cos55^(@)

    A
    1
    B
    0
    C
    2
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of (sin55^(@)-cos55^(@))/(sin10^(@)) is

    The value of (sin 85^@ - sin 35^@)/(cos 65^@) is

    The value of (sin65^(@))/(cos25^(@)) is

    The value of (sin 55^(@) - cos 55^(@))/(sin 10^(@)) is

    The value of (sin 55^(@) - cos 55^(@))/(sin10^(@) is