Home
Class 12
MATHS
Let f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|...

Let `f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x|` The range of f(x) is

A

`[0,(pi)/(2)]`

B

`[0,(3pi)/(2)]`

C

`[0,(pi)/(4)]`

D

`[0,pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1} x + |\sin^{-1} x| + \sin^{-1} |x| \), we can analyze the function based on the properties of the inverse sine function and the absolute value. ### Step 1: Analyze the function for different intervals of \( x \) 1. **For \( x \in [0, 1] \):** - Here, \( \sin^{-1} x \) is non-negative, so: \[ f(x) = \sin^{-1} x + |\sin^{-1} x| + \sin^{-1} |x| = \sin^{-1} x + \sin^{-1} x + \sin^{-1} x = 3 \sin^{-1} x \] - The range of \( \sin^{-1} x \) for \( x \in [0, 1] \) is from \( 0 \) to \( \frac{\pi}{2} \). Therefore, the range of \( f(x) \) in this interval is: \[ [0, 3 \cdot \frac{\pi}{2}] = [0, \frac{3\pi}{2}] \] 2. **For \( x \in [-1, 0) \):** - Here, \( \sin^{-1} x \) is non-positive, so: \[ f(x) = \sin^{-1} x + |\sin^{-1} x| + \sin^{-1} |x| = \sin^{-1} x - \sin^{-1} x + \sin^{-1} (-x) = \sin^{-1} (-x) \] - Since \( -x \) ranges from \( 0 \) to \( 1 \) as \( x \) ranges from \( -1 \) to \( 0 \), we have: \[ f(x) = \sin^{-1} (-x) \text{ which ranges from } 0 \text{ to } \frac{\pi}{2} \] 3. **For \( x < -1 \) or \( x > 1 \):** - The function \( \sin^{-1} x \) is not defined for \( |x| > 1 \), so we only consider \( x \in [-1, 1] \). ### Step 2: Combine the ranges From the analysis: - For \( x \in [0, 1] \), the range of \( f(x) \) is \( [0, \frac{3\pi}{2}] \). - For \( x \in [-1, 0) \), the range of \( f(x) \) is \( [0, \frac{\pi}{2}] \). Thus, the overall range of \( f(x) \) is: \[ [0, \frac{3\pi}{2}] \] ### Final Answer The range of \( f(x) \) is \([0, \frac{3\pi}{2}]\). ---

To find the range of the function \( f(x) = \sin^{-1} x + |\sin^{-1} x| + \sin^{-1} |x| \), we can analyze the function based on the properties of the inverse sine function and the absolute value. ### Step 1: Analyze the function for different intervals of \( x \) 1. **For \( x \in [0, 1] \):** - Here, \( \sin^{-1} x \) is non-negative, so: \[ f(x) = \sin^{-1} x + |\sin^{-1} x| + \sin^{-1} |x| = \sin^{-1} x + \sin^{-1} x + \sin^{-1} x = 3 \sin^{-1} x ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Range of f(x)=sin^(-1)x+sec^(-1)x is

If f(x)=(sin^(-1)x+tan^(-1)x)/(pi)+2sqrt(x), then the range of f(x) is

Knowledge Check

  • Let f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| If the equation f(x) = k has two solutions, then true set of values of k is

    A
    `k in (0,(pi)/(2))`
    B
    `k in[0,(pi)/(2)]`
    C
    `k in(0,(pi)/(2)]`
    D
    `k in [0,(pi)/(2))`
  • Consider a real - valued function f(x) = sqrt(sin^(-1) x + 2) + sqrt(1 - sin^(-1)x) The range of f (x) is

    A
    `[0,sqrt3]`
    B
    `[1,sqrt2]`
    C
    `[1,sqrt6]`
    D
    `[sqrt3,sqrt6]`
  • Similar Questions

    Explore conceptually related problems

    f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| no.of solution of equation f(x)=x is

    f(x)= sin^(-1)((x)/(1+|x|))

    Range of f(x)=sin^(-1)x+cos^(-1)x+cot^(-1)x

    Range of f(x)=sin^(-1)x*sin x

    If f(x)=(sin^(2)x+4sin x+5)/(2sin^(2)x+8sin x+8) then range of f(x) is

    Range of f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x is