Home
Class 12
MATHS
If a^(2)+b^(2)+c^(2)=1 where, a,b,cin R,...

If `a^(2)+b^(2)+c^(2)=1` where, a,b,`cin R`, then the maximum value of `(4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2)` is

A

25

B

50

C

144

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the maximum value of \( (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \) given the constraint \( a^2 + b^2 + c^2 = 1 \), we can use the Cauchy-Schwarz inequality. ### Step-by-step Solution: 1. **Understand the Problem**: We need to maximize the expression \( (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \) under the constraint \( a^2 + b^2 + c^2 = 1 \). 2. **Apply Cauchy-Schwarz Inequality**: According to the Cauchy-Schwarz inequality, for any vectors \( \mathbf{u} \) and \( \mathbf{v} \): \[ |\mathbf{u} \cdot \mathbf{v}|^2 \leq (\mathbf{u} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{v}) \] We can consider the vectors: \[ \mathbf{u} = (4a - 3b, 5b - 4c, 3c - 5a) \] and \[ \mathbf{v} = (1, 1, 1) \] 3. **Calculate the Dot Products**: - First, compute \( \mathbf{u} \cdot \mathbf{u} \): \[ (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \] - Next, compute \( \mathbf{v} \cdot \mathbf{v} \): \[ 1^2 + 1^2 + 1^2 = 3 \] 4. **Set Up the Inequality**: By applying Cauchy-Schwarz, we have: \[ (4a - 3b + 5b - 4c + 3c - 5a)^2 \leq (1^2 + 1^2 + 1^2)((4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2) \] This simplifies to: \[ (0)^2 \leq 3((4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2) \] which is trivially true. 5. **Maximize the Expression**: We can also express the original expression as: \[ (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \leq 50(a^2 + b^2 + c^2) \] Since \( a^2 + b^2 + c^2 = 1 \): \[ (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \leq 50 \] 6. **Conclusion**: The maximum value of \( (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \) is \( 50 \). ### Final Answer: The maximum value is \( \boxed{50} \).

To solve the problem of finding the maximum value of \( (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \) given the constraint \( a^2 + b^2 + c^2 = 1 \), we can use the Cauchy-Schwarz inequality. ### Step-by-step Solution: 1. **Understand the Problem**: We need to maximize the expression \( (4a - 3b)^2 + (5b - 4c)^2 + (3c - 5a)^2 \) under the constraint \( a^2 + b^2 + c^2 = 1 \). 2. **Apply Cauchy-Schwarz Inequality**: According to the Cauchy-Schwarz inequality, for any vectors \( \mathbf{u} \) and \( \mathbf{v} \): \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos

Similar Questions

Explore conceptually related problems

If a,b,c in R^(+) such that a+b+c=21 then the maximum value of a^(2)b^(3)c^(2) is equal to

If a ^(2) + b ^(2) + c ^(2) = 2 (a - b -c)=3, then the value of 2a - 3b + 4c is :

Knowledge Check

  • If a^(2) + b^(2) + c^(2) = 2(a-b-c)-3 , then the value of 4a - 3b + 5c is

    A
    2
    B
    3
    C
    5
    D
    6
  • If a, b, c are unit vectors, then the maximum value of abs(a+2b)^(2)+abs(b+3c)^(2)+abs(c+4a)^(2) is

    A
    28
    B
    21
    C
    48
    D
    58
  • If a^(2) + b^(2) + c^(2) = 2 (a - b - c) - 3 then the value of 4 a - 3 b + 5 c is

    A
    2
    B
    3
    C
    5
    D
    6
  • Similar Questions

    Explore conceptually related problems

    If 9a^(2) + 16b^(2) + c^(2) + 25 = 24, (a+b) , then the value of (3a + 4b + 5c) is :

    If a^(2) + b^(2) + 4 c^(2) = 2 (a + b - 2c)- 3 and a, b, c are real then the value of (a^(2) + b^(2) + c^(2)) is

    If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

    If a ^(3) + b ^(2) + 4c ^(2) = 2 (a + b - 2c) - 3 and a,bc are real, then the value of (a ^(2) + b ^(2) + c ^(2)) is :

    If (2a- 1) ^(2) + (4b -3) ^(2) + (4c + 5) ^(2) = 0, then the value of (a ^(3) +b ^(3) + c ^(3) -3abc)/(a ^(2) + b ^(2) + c ^(2)) is :