Calculate `Delta_(r)S_(m)^(Theta)` for the reaction:
`4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s)`
Given that `S_(m)^(Theta)(Fe) = 27.3J K^(-1) mol^(-1)`,
`S_(m)^(Theta)(O_(2)) = 205.0J K^(-1)mol^(-1)`and `S_(m)^(Theta)(Fe_(2)O_(3)) = 87.4 J K^(-1) mol^(-1)`.
Calculate `Delta_(r)S_(m)^(Theta)` for the reaction:
`4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s)`
Given that `S_(m)^(Theta)(Fe) = 27.3J K^(-1) mol^(-1)`,
`S_(m)^(Theta)(O_(2)) = 205.0J K^(-1)mol^(-1)`and `S_(m)^(Theta)(Fe_(2)O_(3)) = 87.4 J K^(-1) mol^(-1)`.
`4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s)`
Given that `S_(m)^(Theta)(Fe) = 27.3J K^(-1) mol^(-1)`,
`S_(m)^(Theta)(O_(2)) = 205.0J K^(-1)mol^(-1)`and `S_(m)^(Theta)(Fe_(2)O_(3)) = 87.4 J K^(-1) mol^(-1)`.
Text Solution
Verified by Experts
`Delta_(r) S^(@)= SigmaS^(@) `( Products ) `- SigmaS^(@) ` ( Reactants) `=2S^(@) (Fe_(2)O_(3)) -[4 S^(@) ( Fe) + 3S^(@) ( O_(2))]`
`= 2xx 87.4 - [4 xx 27.3 + 3 xx 205.0 ] JK^(-1) mol^(-1) = - 549 JK^(-1) mol^(-1)`
This is the entropy change for the reaction, i.e., system `( Delta S_("system"))`
Now, `Delta_(r) G^(@) = Delta_(r) H^(@) - TDelta_(r) S^(@) = - 1648000 J mol^(_1) -298 K xx ( - 549 .4 J K^(-1) mol^(-1))`
`= - 1648000 +163721 J K^(-1) mol^(_1) = - 1484279 J K^(-1) mol^(-1)`
As `Delta G^(@)`is - ve , the reaction is spontaneous.
Alsternatively , as the reaction is exothermic, heat given out by thereaction is absorbed by the surroundings at room temperature `(25^(@)C)`. Hence, entropy ofthe surroundings increases.
`DeltaS_("surroundings")= (1648xx10^(3)JK^(-1) mol^(-1))/( 298 K ) = 5530 JK^(-1) mol^(_1)`
`:. Delta S_("total") = DeltaS_("system") + DeltaS_("surroundings") = -549.4 + 5530 JK^(-1) mol^(-1) = + 4980. 6JK^(-1) mol^(-1)`
As `Delta S_("total") ` is `+ ve` ,therefore, the reaction is spontaneous.
`= 2xx 87.4 - [4 xx 27.3 + 3 xx 205.0 ] JK^(-1) mol^(-1) = - 549 JK^(-1) mol^(-1)`
This is the entropy change for the reaction, i.e., system `( Delta S_("system"))`
Now, `Delta_(r) G^(@) = Delta_(r) H^(@) - TDelta_(r) S^(@) = - 1648000 J mol^(_1) -298 K xx ( - 549 .4 J K^(-1) mol^(-1))`
`= - 1648000 +163721 J K^(-1) mol^(_1) = - 1484279 J K^(-1) mol^(-1)`
As `Delta G^(@)`is - ve , the reaction is spontaneous.
Alsternatively , as the reaction is exothermic, heat given out by thereaction is absorbed by the surroundings at room temperature `(25^(@)C)`. Hence, entropy ofthe surroundings increases.
`DeltaS_("surroundings")= (1648xx10^(3)JK^(-1) mol^(-1))/( 298 K ) = 5530 JK^(-1) mol^(_1)`
`:. Delta S_("total") = DeltaS_("system") + DeltaS_("surroundings") = -549.4 + 5530 JK^(-1) mol^(-1) = + 4980. 6JK^(-1) mol^(-1)`
As `Delta S_("total") ` is `+ ve` ,therefore, the reaction is spontaneous.
|
Topper's Solved these Questions
THERMODYNAMICS
PRADEEP|Exercise PROBLEMS FOR PRACTICE|14 VideosView PlaylistTHERMODYNAMICS
PRADEEP|Exercise PROBLEM FOR PRACTICE|79 VideosView PlaylistTHERMODYNAMICS
PRADEEP|Exercise Problem|20 VideosView PlaylistSTRUCTURE OF ATOM
PRADEEP|Exercise Competition Focus (JEE (Main and Advanced)/Medical Entrance (IX. Assertion And Reason Type Questions (Type II))|12 VideosView Playlist
Similar Questions
Explore conceptually related problems
Calculate the change in entropy for the following reaction 2CO(g) +O_(2)(g) rarr 2CO_(2)(g) Given: S_(CO)^(Theta)(g)=197.6 J K^(-1)mol^(-1) S_(O_(2))^(Theta)(g)=205.03 J K^(-1)mol^(-1) S_(CO_(2))^(Theta)(g)=213.6 J K^(-1)mol^(-1)
Watch solution
Calculate DeltaG^(Theta) for the following reaction: CO(g) +((1)/(2))O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 282.84 kJ Given, S_(CO_(2))^(Theta)=213.8 J K^(-1) mol^(-1), S_(CO(g))^(Theta)= 197.9 J K^(-1) mol^(-1), S_(O_(2))^(Theta)=205.0 J K^(-1)mol^(-1) ,
Watch solution
Knowledge Check
Calculate standard entropy change in the reaction Fe_(2)O_(3)(s)+3H_(2)(g) rarr 2Fe(s)+3H_(2)O(l) Given : S_(m_(0))(Fe_(2)O_(3).S)=87.4,S_(m)^(@)(Fe,S)=27.3 S_(m)^(@)(H_(2),g)=130.7,S_(m)^(@)(H_(2)O,l)=69.9JK^(-1)mol^(-1)
Calculate standard entropy change in the reaction Fe_(2)O_(3)(s)+3H_(2)(g) rarr 2Fe(s)+3H_(2)O(l) Given : S_(m_(0))(Fe_(2)O_(3).S)=87.4,S_(m)^(@)(Fe,S)=27.3 S_(m)^(@)(H_(2),g)=130.7,S_(m)^(@)(H_(2)O,l)=69.9JK^(-1)mol^(-1)
A
`-212.5JK^(-1)mol^(-1)`
B
`-215.2JK^(-1)mol^(-1)`
C
`-120.9JK^(-1)mol^(-1)`
D
none of these
Submit
in the given equation 4Fe(s)+3O_(2)(g) to 2Fe_(2)O_(3)(s) the entropy change is =-549.4 JK^(-1) mol^(-1) at 298 K (Delta_rH^(-)=-1648 xx10^(3)Jmol^(-1)) .the above reactions is
in the given equation 4Fe(s)+3O_(2)(g) to 2Fe_(2)O_(3)(s) the entropy change is =-549.4 JK^(-1) mol^(-1) at 298 K (Delta_rH^(-)=-1648 xx10^(3)Jmol^(-1)) .the above reactions is
A
spontaneous
B
non-spontaneous
C
both (a) and (b)
D
none of these
Submit
Which of the following statements is correct about the reaction given below : 4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s)
Which of the following statements is correct about the reaction given below : 4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s)
A
Total mass of iron and oxygen in reactants = total mass of iron and oxygen in product therefore it follows law of conservation of mass.
B
Total mass of reactants = total mass of product , therefore, law of multiple proportions is followed
C
Amount of `Fe_(2)O_(3)` can be increased by taking one of the reactants (iron or oxygen) in excess.
D
Amount of `Fe_(2)O_(3)` produced will decrease if the amount of any one of the reactants (iron or oxygen) is taken in excess.
Submit
Similar Questions
Explore conceptually related problems
Calculate the entropy change for the following reaction H_(2)(g) +CI_(2)(g) rarr 2HCI (g) at 298 K Given S^(Theta)H_(2) = 131 J K^(-1) mol^(-1), S^(Theta)CI_(2) = 233 J K^(-1) mol^(-1) , and S^(Theta) HCI = 187 J K^(-1) mol^(-1)
Watch solution
Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .
Watch solution
Calculate the standard Gibbs energy change for the formation of propane at 298 K: 3C("graphite") + 4H_(2)(g) to C_(3)H_(8)(g) Delta_(f)H^(@) for propane, C_(3)H_(8)(g) = -103.8 kJ mol^(-1) . Given : S_(m)^(0)[C_(3)H_(8)(g)] = 270.2 J K^(-1) "mol"^(-1) S_(m)^(@)("graphite") = 5.70 J K^(-1) "mol"^(-1) and S_(m)^(0)[H_(2)(g)] = 130.7 J K^(-1) "mol"^(-1) .
Watch solution
Calculate the standard molar entropy chnage for the following reactions at 298 K : (a) 4Fe(s) + 3O_(2)(g) to 2Fe_(2)O_(3)(s) [S^(@) (Fe_(2)O_(3)) = 87.4, S^(@)(Fe) = 27.3, S^(@)(O_(2)) = 205.1(all "in" JK^(-1)mol^(-1)) (b) Ca(s) + 2H_(2)O(l) to Ca(OH)_(2)(aq) + H_(2)(g) [S^(@)Ca(OH)_(2) = -74.5, S^(@)(Ca) = 41.42, S^(@)(H_(2)) = 130.7, S^(@)(H_(2)O) = 69.91 (all in JK^(-1) mol^(-1) ) (c) Na_(2)CO_(3)(s) + 2HCI (aq) to 2NaCI(aq) + H_(2)O(l) + CO_(2)(g) = 115.13, S^(@)(H_(2)O) = 69.9, S^(@)(CO_(2)) = 213.74 (all in JK^(-1)mol^(-1) ).
Watch solution
The standard Gibbs energy change value (Deltat_(r)G^(Theta)) at 1773K are given for the following reactions: 4Fe +3O_(2) rarr 2Fe_(2)O_(3), Delta_(r)G^(Theta) = - 1487 kJ mol^(-1) 4AI +3O_(2) rarr 2AI_(2)O_(3),Delta_(r)G^(Theta) =- 22500 kJ mol^(-1) 2CO +O_(2) rarr 2CO_(2),Delta_(r)G^(Theta) =- 515 kJ mol^(-1) Find out the possibility of reducing Fe_(2)O_(3) and AI_(2)O_(3) with CO at this temperature.
Watch solution