Calculate `Delta_(r)S_(m)^(Theta)` for the reaction:
`4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s)`
Given that `S_(m)^(Theta)(Fe) = 27.3J K^(-1) mol^(-1)`,
`S_(m)^(Theta)(O_(2)) = 205.0J K^(-1)mol^(-1)`and `S_(m)^(Theta)(Fe_(2)O_(3)) = 87.4 J K^(-1) mol^(-1)`.
Calculate `Delta_(r)S_(m)^(Theta)` for the reaction:
`4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s)`
Given that `S_(m)^(Theta)(Fe) = 27.3J K^(-1) mol^(-1)`,
`S_(m)^(Theta)(O_(2)) = 205.0J K^(-1)mol^(-1)`and `S_(m)^(Theta)(Fe_(2)O_(3)) = 87.4 J K^(-1) mol^(-1)`.
`4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s)`
Given that `S_(m)^(Theta)(Fe) = 27.3J K^(-1) mol^(-1)`,
`S_(m)^(Theta)(O_(2)) = 205.0J K^(-1)mol^(-1)`and `S_(m)^(Theta)(Fe_(2)O_(3)) = 87.4 J K^(-1) mol^(-1)`.
Text Solution
Verified by Experts
`Delta_(r) S^(@)= SigmaS^(@) `( Products ) `- SigmaS^(@) ` ( Reactants) `=2S^(@) (Fe_(2)O_(3)) -[4 S^(@) ( Fe) + 3S^(@) ( O_(2))]`
`= 2xx 87.4 - [4 xx 27.3 + 3 xx 205.0 ] JK^(-1) mol^(-1) = - 549 JK^(-1) mol^(-1)`
This is the entropy change for the reaction, i.e., system `( Delta S_("system"))`
Now, `Delta_(r) G^(@) = Delta_(r) H^(@) - TDelta_(r) S^(@) = - 1648000 J mol^(_1) -298 K xx ( - 549 .4 J K^(-1) mol^(-1))`
`= - 1648000 +163721 J K^(-1) mol^(_1) = - 1484279 J K^(-1) mol^(-1)`
As `Delta G^(@)`is - ve , the reaction is spontaneous.
Alsternatively , as the reaction is exothermic, heat given out by thereaction is absorbed by the surroundings at room temperature `(25^(@)C)`. Hence, entropy ofthe surroundings increases.
`DeltaS_("surroundings")= (1648xx10^(3)JK^(-1) mol^(-1))/( 298 K ) = 5530 JK^(-1) mol^(_1)`
`:. Delta S_("total") = DeltaS_("system") + DeltaS_("surroundings") = -549.4 + 5530 JK^(-1) mol^(-1) = + 4980. 6JK^(-1) mol^(-1)`
As `Delta S_("total") ` is `+ ve` ,therefore, the reaction is spontaneous.
`= 2xx 87.4 - [4 xx 27.3 + 3 xx 205.0 ] JK^(-1) mol^(-1) = - 549 JK^(-1) mol^(-1)`
This is the entropy change for the reaction, i.e., system `( Delta S_("system"))`
Now, `Delta_(r) G^(@) = Delta_(r) H^(@) - TDelta_(r) S^(@) = - 1648000 J mol^(_1) -298 K xx ( - 549 .4 J K^(-1) mol^(-1))`
`= - 1648000 +163721 J K^(-1) mol^(_1) = - 1484279 J K^(-1) mol^(-1)`
As `Delta G^(@)`is - ve , the reaction is spontaneous.
Alsternatively , as the reaction is exothermic, heat given out by thereaction is absorbed by the surroundings at room temperature `(25^(@)C)`. Hence, entropy ofthe surroundings increases.
`DeltaS_("surroundings")= (1648xx10^(3)JK^(-1) mol^(-1))/( 298 K ) = 5530 JK^(-1) mol^(_1)`
`:. Delta S_("total") = DeltaS_("system") + DeltaS_("surroundings") = -549.4 + 5530 JK^(-1) mol^(-1) = + 4980. 6JK^(-1) mol^(-1)`
As `Delta S_("total") ` is `+ ve` ,therefore, the reaction is spontaneous.
Topper's Solved these Questions
THERMODYNAMICS
PRADEEP|Exercise PROBLEMS FOR PRACTICE|14 VideosTHERMODYNAMICS
PRADEEP|Exercise PROBLEM FOR PRACTICE|79 VideosTHERMODYNAMICS
PRADEEP|Exercise Problem|20 VideosSTRUCTURE OF ATOM
PRADEEP|Exercise Competition Focus (JEE (Main and Advanced)/Medical Entrance (IX. Assertion And Reason Type Questions (Type II))|12 Videos
Similar Questions
Explore conceptually related problems
Calculate the change in entropy for the following reaction 2CO(g) +O_(2)(g) rarr 2CO_(2)(g) Given: S_(CO)^(Theta)(g)=197.6 J K^(-1)mol^(-1) S_(O_(2))^(Theta)(g)=205.03 J K^(-1)mol^(-1) S_(CO_(2))^(Theta)(g)=213.6 J K^(-1)mol^(-1)
Calculate DeltaG^(Theta) for the following reaction: CO(g) +((1)/(2))O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 282.84 kJ Given, S_(CO_(2))^(Theta)=213.8 J K^(-1) mol^(-1), S_(CO(g))^(Theta)= 197.9 J K^(-1) mol^(-1), S_(O_(2))^(Theta)=205.0 J K^(-1)mol^(-1) ,
Calculate the entropy change for the following reaction H_(2)(g) +CI_(2)(g) rarr 2HCI (g) at 298 K Given S^(Theta)H_(2) = 131 J K^(-1) mol^(-1), S^(Theta)CI_(2) = 233 J K^(-1) mol^(-1) , and S^(Theta) HCI = 187 J K^(-1) mol^(-1)
Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .
Calculate the standard Gibbs energy change for the formation of propane at 298 K: 3C("graphite") + 4H_(2)(g) to C_(3)H_(8)(g) Delta_(f)H^(@) for propane, C_(3)H_(8)(g) = -103.8 kJ mol^(-1) . Given : S_(m)^(0)[C_(3)H_(8)(g)] = 270.2 J K^(-1) "mol"^(-1) S_(m)^(@)("graphite") = 5.70 J K^(-1) "mol"^(-1) and S_(m)^(0)[H_(2)(g)] = 130.7 J K^(-1) "mol"^(-1) .
Calculate standard entropy change in the reaction Fe_(2)O_(3)(s)+3H_(2)(g) rarr 2Fe(s)+3H_(2)O(l) Given : S_(m_(0))(Fe_(2)O_(3).S)=87.4,S_(m)^(@)(Fe,S)=27.3 S_(m)^(@)(H_(2),g)=130.7,S_(m)^(@)(H_(2)O,l)=69.9JK^(-1)mol^(-1)
The standard Gibbs energy change value (Deltat_(r)G^(Theta)) at 1773K are given for the following reactions: 4Fe +3O_(2) rarr 2Fe_(2)O_(3), Delta_(r)G^(Theta) = - 1487 kJ mol^(-1) 4AI +3O_(2) rarr 2AI_(2)O_(3),Delta_(r)G^(Theta) =- 22500 kJ mol^(-1) 2CO +O_(2) rarr 2CO_(2),Delta_(r)G^(Theta) =- 515 kJ mol^(-1) Find out the possibility of reducing Fe_(2)O_(3) and AI_(2)O_(3) with CO at this temperature.
Knowledge Check
Calculate standard entropy change in the reaction Fe_(2)O_(3)(s)+3H_(2)(g) rarr 2Fe(s)+3H_(2)O(l) Given : S_(m_(0))(Fe_(2)O_(3).S)=87.4,S_(m)^(@)(Fe,S)=27.3 S_(m)^(@)(H_(2),g)=130.7,S_(m)^(@)(H_(2)O,l)=69.9JK^(-1)mol^(-1)
Calculate standard entropy change in the reaction Fe_(2)O_(3)(s)+3H_(2)(g) rarr 2Fe(s)+3H_(2)O(l) Given : S_(m_(0))(Fe_(2)O_(3).S)=87.4,S_(m)^(@)(Fe,S)=27.3 S_(m)^(@)(H_(2),g)=130.7,S_(m)^(@)(H_(2)O,l)=69.9JK^(-1)mol^(-1)
A
`-212.5JK^(-1)mol^(-1)`
B
`-215.2JK^(-1)mol^(-1)`
C
`-120.9JK^(-1)mol^(-1)`
D
none of these
in the given equation 4Fe(s)+3O_(2)(g) to 2Fe_(2)O_(3)(s) the entropy change is =-549.4 JK^(-1) mol^(-1) at 298 K (Delta_rH^(-)=-1648 xx10^(3)Jmol^(-1)) .the above reactions is
in the given equation 4Fe(s)+3O_(2)(g) to 2Fe_(2)O_(3)(s) the entropy change is =-549.4 JK^(-1) mol^(-1) at 298 K (Delta_rH^(-)=-1648 xx10^(3)Jmol^(-1)) .the above reactions is
A
spontaneous
B
non-spontaneous
C
both (a) and (b)
D
none of these
Which of the following statements is correct about the reaction given below : 4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s)
Which of the following statements is correct about the reaction given below : 4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s)
A
Total mass of iron and oxygen in reactants = total mass of iron and oxygen in product therefore it follows law of conservation of mass.
B
Total mass of reactants = total mass of product , therefore, law of multiple proportions is followed
C
Amount of `Fe_(2)O_(3)` can be increased by taking one of the reactants (iron or oxygen) in excess.
D
Amount of `Fe_(2)O_(3)` produced will decrease if the amount of any one of the reactants (iron or oxygen) is taken in excess.