Home
Class 11
CHEMISTRY
Calculate the standard free energy chang...

Calculate the standard free energy change for the reaction :
`H_(2)(g) + I_(2)(g) to 2HI(g) DeltaH^(@) = 51.9 kJ "mol"^(-1)` Given : `S^(@)(H_(2)) = 130.6 J K^(-1) "mol"^(-1)`
`S^(@)(I_(2)) = 116.7 J K^(-1) "mol"^(-1)` and `S^(@)(HI) = 206.3 J K^(-1) "mol"^(-1)`.

Text Solution

Verified by Experts

The correct Answer is:
`DeltaG^(@) = + 2640. 6 Jmol^(-1)` . Not feasible

`Delta_(r)S^(@)= 2xxS_((HI))^(@) - [ S_((H_(2)))^(@) +S_((I_(2)))^(@)]= 2 xx 206.3 - ( 130.6+ 116.7) = 165.3 J mol^(-1)`
`Delta_(r)G^(@) = Delta_(r)H^(@) - T Delta_(r)S^(@) = 51900 - 298 xx 165.3 = 2640.6 J mol^(-1)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THERMODYNAMICS

    PRADEEP|Exercise CURIOSITY QUESTIONS|4 Videos
  • THERMODYNAMICS

    PRADEEP|Exercise ADVANCED PROBLEMS (FOR COMPETITIONS)|20 Videos
  • THERMODYNAMICS

    PRADEEP|Exercise PROBLEMS FOR PRACTICE|14 Videos
  • STRUCTURE OF ATOM

    PRADEEP|Exercise Competition Focus (JEE (Main and Advanced)/Medical Entrance (IX. Assertion And Reason Type Questions (Type II))|12 Videos

Similar Questions

Explore conceptually related problems

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .

Calculate the standard entropy change for the following reaction : H_(2)(g) + Cl_(2)(g) rarr 2HCl(g) at 298 K Given S_(H_(2))^(@) = 131J K^(@) mol^(_1), S_(Cl_(2))^(@) = 223 JK^(-1) mol^(-1) and S_(HCl)^(@) =187 JK^(-1) mol^(-1)

Knowledge Check

  • Calculate the free energy change for the following reaction at 300 K. 2CuO_((s)) rarr Cu_(2)O_((s))+(1)/(2)O_(2(g)) Given Delta H = 145.6 kJ mol^(-1) and Delta S = 116.JK^(-1) mol^(-1)

    A
    `110.8 kJ mol^(-1)`
    B
    `221.5kJ mol^(-1)`
    C
    `55.4 k J mol^(-1)`
    D
    `145.6 kJ mol^(-1)`
  • Calculate the entropy of Br_(2)(g) in the reaction H_(2)(g)+Br_(2)(g)rarr2HBr(g), Delta S^(@)=20.1 JK^(-1) given, entropy of H_(2) and HBr is 130.6 and 198.5 J mol^(-1)K^(-1) :-

    A
    `246.3 JK^(-1)`
    B
    `123.15 JK^(-1)`
    C
    `24.63 JK^(-1)`
    D
    `20 KJK^(-1)`
  • The standard Gibb's energy change for the formation of propane. C_(3)H_(8) (g) at 298 K is [Delta_(f)H^(theta) for propane =-103.85 kJ" mole"^(-1), S^(theta)._(m)C_(3)H_(8)(g)=270.2J.K^(-1) mol^(-1), S^(theta)._(m)H_(2)(g)=130.68J.K^(-1) mol^(-1) . and S^(theta)._(m)C_("(graphite)")=5.74JK^(-1) mol^(-1)]

    A
    `-23.4 k.J`
    B
    `-44.4 k.J`
    C
    `-54.4 k.J`
    D
    `-104.5 kJ`
  • Similar Questions

    Explore conceptually related problems

    Calculate the entropy change for the following reaction H_(2)(g) +CI_(2)(g) rarr 2HCI (g) at 298 K Given S^(Theta)H_(2) = 131 J K^(-1) mol^(-1), S^(Theta)CI_(2) = 233 J K^(-1) mol^(-1) , and S^(Theta) HCI = 187 J K^(-1) mol^(-1)

    Calculate the equilibrium constant for the reaction : NO(g) + 1/2 O_(2)(g) iff NO_(2)(g) Given, Delta_(f)H^(@) at 298K : NO(g) = 90.4 kJ "mol"^(-1), NO_(2)(g) = 33.8 kJ "mol"^(-1) and DeltaS^(@) at 298 K = -70.8 J K^(-1) "mol"^(-1) , R = 8.31 J K^(-1) "mol"^(-1) .

    Calculate the standard Gibbs energy change for the formation of propane at 298 K: 3C("graphite") + 4H_(2)(g) to C_(3)H_(8)(g) Delta_(f)H^(@) for propane, C_(3)H_(8)(g) = -103.8 kJ mol^(-1) . Given : S_(m)^(0)[C_(3)H_(8)(g)] = 270.2 J K^(-1) "mol"^(-1) S_(m)^(@)("graphite") = 5.70 J K^(-1) "mol"^(-1) and S_(m)^(0)[H_(2)(g)] = 130.7 J K^(-1) "mol"^(-1) .

    Using Delta_(f)H^(@) and S_(m)^(@) calculate the standard Gibbs energy of formation, Delta_(f)G^(@) for each following : (a) CS_(2)(l) (b) N_(2)H_(4)(l) Delta_(f)H^(@)(CS_(2)) = 89.70 kJ "mol"^(-1), Delta_(r)S^(@)(CS_(2)) = 151.34 J K^(-1) "mol"^(-1) Delta_(f)H^(@)(N_(2)H_(4)) = 50.63 kJ "mol"^(-1) , Delta_(r)S^(@)N_(2)H_(2) = 121.21 J K^(-1) "mol"^(-1) .

    Calculate the entropy changes for the following reactions : (i) 2CO(g) + O_(2)(g) to 2CO_(2)(g) (ii) 2H_(2)(g) + O_(2)(g) to 2H_(2)O(l) Entropies of different compounds are : CO(g) = 197.6 J K^(-1) "mol"^(-1), O_(2)(g) = 205.03 J K^(-1) "mol"^(-1) CO_(2)(g) = 213.6 JK^(-1) "mol"^(-1), H_(2)(g) = 130.6 J K^(-1) "mol"^(-1) H__(2)O(l) = 69.96 J K^(-1) "mol"^(-1)