Home
Class 12
MATHS
A matrix A=[a(ij)](mxxn) is...

A matrix `A=[a_(ij)]_(mxxn)` is

A

Horizontal matrix if `mgtn`

B

Horizontal matrix if `mltn`

C

Vertical matrix if `mgtn`

D

Vertical matrix if `mltn`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem regarding the classification of a matrix \( A = [a_{ij}]_{m \times n} \) based on the number of rows \( m \) and columns \( n \), we will analyze each option step by step. ### Step-by-Step Solution: 1. **Understanding Matrix Dimensions**: - A matrix \( A \) is defined as \( m \times n \), where \( m \) is the number of rows and \( n \) is the number of columns. 2. **Identifying a Horizontal Matrix**: - A matrix is called a **horizontal matrix** if the number of rows is less than the number of columns, i.e., \( m < n \). - Therefore, if \( m > n \), the matrix cannot be horizontal. 3. **Analyzing Option 1**: - **Option 1** states: "Horizontal matrix if \( m > n \)". - This statement is **false** because for a horizontal matrix, we require \( m < n \). 4. **Identifying a Vertical Matrix**: - A matrix is called a **vertical matrix** if the number of rows is greater than the number of columns, i.e., \( m > n \). 5. **Analyzing Option 2**: - **Option 2** states: "Horizontal matrix if \( m < n \)". - This statement is **true** because it correctly identifies the condition for a horizontal matrix. 6. **Analyzing Option 3**: - **Option 3** states: "Vertical matrix if \( m > n \)". - This statement is **true** because it correctly identifies the condition for a vertical matrix. 7. **Analyzing Option 4**: - **Option 4** states: "Vertical matrix if \( m < n \)". - This statement is **false** because for a vertical matrix, we require \( m > n \). ### Conclusion: - The correct options based on the definitions are: - **Option 2**: True (Horizontal matrix if \( m < n \)) - **Option 3**: True (Vertical matrix if \( m > n \)) ### Final Answer: - The correct options are **Option 2** and **Option 3**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE|Exercise Assignment (Section - D) Linked Comprehension Type Questions|3 Videos
  • MATRICES

    AAKASH INSTITUTE|Exercise Assignment (Section - E) Assertion - Reason Type Questions|3 Videos
  • MATRICES

    AAKASH INSTITUTE|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If a_(j)=0(i!=j) and a_(ij)=4(i=j), then the matrix A=[a_(ij)]_(n xx n) is a matrix

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

Knowledge Check

  • If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

    A
    Singular
    B
    Zero matrix
    C
    Symmetric
    D
    Skew-Symmetric matrix
  • Consider a matrix A=[a_(ij)]_(3xx3) , where a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):} if b_(ij) is cofactor of a_(ij) in matrix A and c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr) , then value of root3(det[c_(ij)]_(3xx3)) is

    A
    `4`
    B
    `3`
    C
    `16`
    D
    `5`
  • If matrix A = [a_(ij)]_(3xx3), matrix B= [b_(ij)]_(3xx3) where a_(ij) + a_(ij)=0 and b_(ij) - b_(ij) = 0 then A^(4) cdot B^(3) is

    A
    skew- symmetric matrix
    B
    singular
    C
    symmetric
    D
    Both B & C
  • Similar Questions

    Explore conceptually related problems

    Construct a matrix A=[a_(ij)]_(2xx2) whose elements a_(ij) are given by a_(ij)=e^(2ix) sin jx .

    Write the element a_(12) of the matrix A=[a_(ij)]_(2xx2) , whose elements a_(ij) are given by a_(ij)=e^(2ix)sinjx .

    If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

    Statement 1: The determinant of a matrix A=[a_(ij)]_(5xx5) where a_(ij)+a_(ji)=0 for all i and j is zero.Statement 2: The determinant of a skew-symmetric matrix of odd order is zero

    A matrix A=[a_(ij)] is an upper triangular matrix, if