Home
Class 12
MATHS
A=[{:(1,0,k),(2, 1,3),(k,0,1):}] is inve...

`A=[{:(1,0,k),(2, 1,3),(k,0,1):}]` is invertible for

A

PQ

B

QAP

C

PAQ

D

`PA^(-1)Q`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - I|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

M is a matrix with real entries given by M=[{:(4,k,0),(6,3,0),(2,1,k):}] Which of the following conditons guarantee the invertibility of M ? 1. k ne 2 2. k ne 0 3. k ne 1 4. k = 1 select the correct answer using the code given below :

Four distinct points (2k,3k),(1,0),(0,1) and (0,0) lies on a circle for-

If matrix A=[{:(3,2,4),(1,2,-1),(0,1,1):}]and A^(-1)=1/k adj A, then k is

If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)] , then find 'k' so that k^(2)=5A-21I .

If {:A=[(1,0),(k,1)]andB=[(0,0),(k,0)]:} such that A^100-I=lambdaB," then "lambda=

Four distinct points (k, 2k), (2, 0), (0, 2) and (0,0) lie on a circle for : (A) k = 0 (B) k = 6/5 (C) k = 1 (D) k = -1

If the points A(2,1,1,),B(0,-1,4)andC(k,3,-2) are collinear, then k= . . . . . . . .

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .