Home
Class 12
MATHS
Calculate lim(x to 2) , where f(x) = {{:...

Calculate `lim_(x to 2) `, where `f(x) = {{:(3 if ,x le 2),(4 if, x gt 2):}`

Text Solution

Verified by Experts

The correct Answer is:
`underset(x to 2)(lim) f(x)` does not exist

`underset(x to 2)(lim) f(x) != underset(x to 2^(+))(lim) f(x)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

Find lim_(x to 0)f(x) and lim_(x to 1)f(x) , where f(x)={{:(2x+3",", x le 0), (3(x+1)",", x gt 0):}

Knowledge Check

  • Find 'k' so that : lim_(x to 2) f(x) exists, where : f(x)={{:(2x+3",", "if "x le 2), (x+k",", "if "x gt 2):}

    A
    3
    B
    4
    C
    5
    D
    6
  • If f(x)={:{(x+2", if " x le 4),(x+4", if " x gt 4):} , then

    A
    `underset( x rarr 4^(+))lim f(x)=6`
    B
    `underset(x rarr 4^(-))lim f(x)=8`
    C
    f has removable discontinuity
    D
    f has irremovable discontinuity
  • Find 'k' so that : lim_(x to 2) f(x) exists, where : f(x)={{:(2x+3",", "if "x le 2), (x+2k",", "if "x gt 2):}

    A
    `5/2`
    B
    `5`
    C
    `2`
    D
    `1/2`
  • Similar Questions

    Explore conceptually related problems

    f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Find 'k' so that : lim_(x to 2) f(x) exists, where : f(x)={{:(2x+3",", "if "x le 2), (x+3k",", "if "x gt 2):}

    f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):} at x = 2 .

    f(x) = {{:(kx^(2)"," if x le 2),(3", " if x gt 2):} at x = 2