Home
Class 12
MATHS
Let A=[[2,2],[9,4]] and I=[[1,0],[0,1]] ...

Let `A=[[2,2],[9,4]]` and `I=[[1,0],[0,1]]` then value of `10 A^(-1)` is-

A

`4I-A`

B

`6I-A`

C

`A-4I`

D

`A-6I`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(10 A^{-1}\) for the matrix \(A = \begin{bmatrix} 2 & 2 \\ 9 & 4 \end{bmatrix}\), we will follow these steps: ### Step 1: Calculate the Determinant of \(A\) The determinant of a 2x2 matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \(A\): \[ \text{det}(A) = (2)(4) - (2)(9) = 8 - 18 = -10 \] ### Step 2: Calculate the Adjoint of \(A\) The adjoint of a 2x2 matrix \(A\) is given by: \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] For our matrix \(A\): \[ \text{adj}(A) = \begin{bmatrix} 4 & -2 \\ -9 & 2 \end{bmatrix} \] ### Step 3: Calculate the Inverse of \(A\) The inverse of a matrix \(A\) can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-10} \cdot \begin{bmatrix} 4 & -2 \\ -9 & 2 \end{bmatrix} = \begin{bmatrix} -\frac{4}{10} & \frac{2}{10} \\ \frac{9}{10} & -\frac{2}{10} \end{bmatrix} = \begin{bmatrix} -0.4 & 0.2 \\ 0.9 & -0.2 \end{bmatrix} \] ### Step 4: Calculate \(10 A^{-1}\) Now we multiply \(A^{-1}\) by 10: \[ 10 A^{-1} = 10 \cdot \begin{bmatrix} -0.4 & 0.2 \\ 0.9 & -0.2 \end{bmatrix} = \begin{bmatrix} -4 & 2 \\ 9 & -2 \end{bmatrix} \] ### Final Answer Thus, the value of \(10 A^{-1}\) is: \[ \begin{bmatrix} -4 & 2 \\ 9 & -2 \end{bmatrix} \] ---

To find the value of \(10 A^{-1}\) for the matrix \(A = \begin{bmatrix} 2 & 2 \\ 9 & 4 \end{bmatrix}\), we will follow these steps: ### Step 1: Calculate the Determinant of \(A\) The determinant of a 2x2 matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \(A\): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If I=[[1,0],[0,1]] , then I^4=

If A= [[a,b],[c,d]] and I= [[1,0],[0,1]] then A^(2)-(a+d)A=

Let matrix A=[[1,0,0],[1,0,1],[0,1,0]] then the value of |A^(2012)-I| is equal to

If A=[[0,-tan(theta/2)],[tan(theta/2),0]](theta!=npi,n in Z),B=[[costheta,-sintheta],[sintheta,costheta]] and I=[[1,0],[0,1]], then the value of (2I)/(costheta+1) is equal to

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find value of A^(2)-5A+6I

If A=[{:(1,0),(0,1):}] . Then the value of A^(4) is :

If A=[[1,0,0],[0,1,0],[0,0,1]] then value of |A+A'| is 1)2 2)8 3)4 4)0

If a^(2)+a+1=0 , then the value of a^(9) is