Home
Class 12
MATHS
Let I=int1^2 (dx)/sqrt(2x^3-9x^2+12x+4)...

Let `I=int_1^2 (dx)/sqrt(2x^3-9x^2+12x+4)` then

A

`1/9 lt I^2 lt 1/8`

B

`1/3 lt I^2 lt 1/2`

C

`1/9 lt I lt 1/8`

D

`1/3 lt I lt 1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_1^2 \frac{dx}{\sqrt{2x^3 - 9x^2 + 12x + 4}} \), we will analyze the function inside the integral and estimate its value. ### Step 1: Define the function Let \( f(x) = \frac{1}{\sqrt{2x^3 - 9x^2 + 12x + 4}} \). ### Step 2: Find the derivative To analyze the behavior of \( f(x) \), we need to find its derivative \( f'(x) \): \[ f'(x) = -\frac{1}{2} (2x^3 - 9x^2 + 12x + 4)^{-3/2} \cdot (6x^2 - 18x + 12) \] ### Step 3: Set the derivative to zero Setting \( f'(x) = 0 \) gives us the critical points: \[ 6x^2 - 18x + 12 = 0 \implies x^2 - 3x + 2 = 0 \] Factoring, we find: \[ (x - 1)(x - 2) = 0 \implies x = 1, 2 \] ### Step 4: Analyze the sign of the derivative To determine the behavior of \( f(x) \) on the interval \( [1, 2] \): - For \( x < 1 \), \( f'(x) > 0 \) (increasing) - For \( x = 1 \), \( f'(x) = 0 \) (local minimum) - For \( x = 2 \), \( f'(x) = 0 \) (local maximum) - For \( x > 2 \), \( f'(x) < 0 \) (decreasing) Thus, \( f(x) \) is decreasing on \( [1, 2] \). ### Step 5: Evaluate \( f(1) \) and \( f(2) \) Calculating \( f(1) \): \[ f(1) = \frac{1}{\sqrt{2(1)^3 - 9(1)^2 + 12(1) + 4}} = \frac{1}{\sqrt{2 - 9 + 12 + 4}} = \frac{1}{\sqrt{9}} = \frac{1}{3} \] Calculating \( f(2) \): \[ f(2) = \frac{1}{\sqrt{2(2)^3 - 9(2)^2 + 12(2) + 4}} = \frac{1}{\sqrt{16 - 36 + 24 + 4}} = \frac{1}{\sqrt{8}} = \frac{1}{2\sqrt{2}} \] ### Step 6: Estimate the integral Since \( f(x) \) is decreasing, we can estimate the integral \( I \): \[ I \text{ is bounded by } f(2) \cdot (2 - 1) \text{ and } f(1) \cdot (2 - 1) \] Thus, \[ \frac{1}{2\sqrt{2}} < I < \frac{1}{3} \] ### Step 7: Square the bounds Squaring the bounds gives: \[ \left(\frac{1}{2\sqrt{2}}\right)^2 < I^2 < \left(\frac{1}{3}\right)^2 \] Calculating: \[ \frac{1}{8} < I^2 < \frac{1}{9} \] ### Conclusion The value of \( I^2 \) lies between \( \frac{1}{8} \) and \( \frac{1}{9} \).

To solve the integral \( I = \int_1^2 \frac{dx}{\sqrt{2x^3 - 9x^2 + 12x + 4}} \), we will analyze the function inside the integral and estimate its value. ### Step 1: Define the function Let \( f(x) = \frac{1}{\sqrt{2x^3 - 9x^2 + 12x + 4}} \). ### Step 2: Find the derivative To analyze the behavior of \( f(x) \), we need to find its derivative \( f'(x) \): \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(9x^(2)-4))

int (2x-9)/sqrt(x^2-9x) dx=

Knowledge Check

  • Let I = int_(1)^(3)sqrt(x^(4)+x^(2)) , dx then

    A
    `I gt 6sqrt(10)`
    B
    `I lt 2sqrt(2)`
    C
    `2sqrt(2)lt I lt 6sqrt(10)`
    D
    `I lt 1`
  • int(dx)/(sqrt(4-9x^(2)))=?

    A
    `(1)/(3) sin^(-1)""(x)/(3)+C`
    B
    `(2)/(3) sin^(-1)""((2x)/(3))+C`
    C
    `(1)/(3) sin^(-1)""((3x)/(2))+C`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    int(dx)/(sqrt(4x^(2)-9))

    I= int (dx)/( sqrt( 4-9 x^(2) ) ) .

    int(dx)/(sqrt(1-9x^(2)))

    If I=int_(1)^(2)(dx)/(sqrt(x)-sqrt(x-1)) , then value of (9)/(32)(l)^(2) , is _________.

    int_(1)^(2)(dx)/(sqrt(x^(2)+4x+3))

    int(dx)/(sqrt(9-4x^(2)))