Home
Class 12
MATHS
The value of cos^(3) ((pi)/(8)). cos((3p...

The value of `cos^(3) ((pi)/(8)). cos((3pi)/(8)) + sin^(3) ((pi)/(8)).sin ((3pi)/(8))` is

A

`1/2sqrt2`

B

`1/sqrt2`

C

`1/2`

D

`-1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^3 \left( \frac{\pi}{8} \right) \cos \left( \frac{3\pi}{8} \right) + \sin^3 \left( \frac{\pi}{8} \right) \sin \left( \frac{3\pi}{8} \right) \), we will follow these steps: ### Step 1: Rewrite \( \cos \left( \frac{3\pi}{8} \right) \) and \( \sin \left( \frac{3\pi}{8} \right) \) Using the identity \( \cos \left( \frac{3\pi}{8} \right) = \sin \left( \frac{\pi}{2} - \frac{3\pi}{8} \right) = \sin \left( \frac{\pi}{8} \right) \) and \( \sin \left( \frac{3\pi}{8} \right) = \cos \left( \frac{\pi}{2} - \frac{3\pi}{8} \right) = \cos \left( \frac{\pi}{8} \right) \), we can rewrite the expression: \[ \cos^3 \left( \frac{\pi}{8} \right) \sin \left( \frac{\pi}{8} \right) + \sin^3 \left( \frac{\pi}{8} \right) \cos \left( \frac{\pi}{8} \right) \] ### Step 2: Factor the expression Now we can factor out \( \cos \left( \frac{\pi}{8} \right) \sin \left( \frac{\pi}{8} \right) \): \[ \cos \left( \frac{\pi}{8} \right) \sin \left( \frac{\pi}{8} \right) \left( \cos^2 \left( \frac{\pi}{8} \right) + \sin^2 \left( \frac{\pi}{8} \right) \right) \] ### Step 3: Simplify using Pythagorean identity Using the Pythagorean identity \( \cos^2 A + \sin^2 A = 1 \): \[ \cos \left( \frac{\pi}{8} \right) \sin \left( \frac{\pi}{8} \right) \cdot 1 = \cos \left( \frac{\pi}{8} \right) \sin \left( \frac{\pi}{8} \right) \] ### Step 4: Use the double angle formula We can use the double angle formula for sine, which states that \( \sin(2A) = 2 \sin(A) \cos(A) \): \[ \sin \left( \frac{\pi}{4} \right) = 2 \sin \left( \frac{\pi}{8} \right) \cos \left( \frac{\pi}{8} \right) \] Since \( \sin \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \): \[ \cos \left( \frac{\pi}{8} \right) \sin \left( \frac{\pi}{8} \right) = \frac{1}{2} \sin \left( \frac{\pi}{4} \right) = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4} \] ### Final Answer Thus, the value of the expression is: \[ \frac{\sqrt{2}}{4} \]

To solve the expression \( \cos^3 \left( \frac{\pi}{8} \right) \cos \left( \frac{3\pi}{8} \right) + \sin^3 \left( \frac{\pi}{8} \right) \sin \left( \frac{3\pi}{8} \right) \), we will follow these steps: ### Step 1: Rewrite \( \cos \left( \frac{3\pi}{8} \right) \) and \( \sin \left( \frac{3\pi}{8} \right) \) Using the identity \( \cos \left( \frac{3\pi}{8} \right) = \sin \left( \frac{\pi}{2} - \frac{3\pi}{8} \right) = \sin \left( \frac{\pi}{8} \right) \) and \( \sin \left( \frac{3\pi}{8} \right) = \cos \left( \frac{\pi}{2} - \frac{3\pi}{8} \right) = \cos \left( \frac{\pi}{8} \right) \), we can rewrite the expression: \[ \cos^3 \left( \frac{\pi}{8} \right) \sin \left( \frac{\pi}{8} \right) + \sin^3 \left( \frac{\pi}{8} \right) \cos \left( \frac{\pi}{8} \right) ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

cos ((pi) / (8)) cos ((3 pi) / (8)) cos ((5 pi) / (8)) cos ((7 pi) / (8)) =

The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) sin ((6pi)/8) sin((7pi)/8) is :

Knowledge Check

  • The value of "cos"^(4)(pi)/(8)+"cos"^(4)(3pi)/(8)+"cos"^(4)(5pi)/(8)+"cos"^(4)(7pi)/(8) is

    A
    `3//2`
    B
    `1//2`
    C
    `3//4`
    D
    `1//4`
  • The value of cos^4(pi/8)+ cos^4((3pi)/8) + cos^4(5 pi)/8)+ cos^4((7pi)/8) is

    A
    0
    B
    `1/2`
    C
    `3/2`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

    The value of sin^(4)(pi/8)+cos^(4)((3 pi)/8)+sin^(4)((5pi)/8)+cos^(4)((7pi)/8) is equal to =

    The value of (1+(cos pi)/(8))(1+(cos(3 pi))/(8))(1+(cos(5 pi))/(8))(1+(cos(7 pi))/(8))is(a)1/4(b)3/4(c)1/8(d)3/8

    The value of sin ((pi) / (14)) sin ((3 pi) / (14)) sin ((8 pi) / (14)) =

    ((sin((pi)/(8))+i cos((pi)/(8)))^(8))/((sin((pi)/(8))-i cos((pi)/(8)))^(8)) =

    Prove that cos((pi)/(8))+cos((3 pi)/(8))+cos((5 pi)/(8))+cos((7 pi)/(8))=0