Home
Class 10
MATHS
if f'(x)=sqrt(2x^2-1) and y=f(x^2) then ...

if `f'(x)=sqrt(2x^2-1)` and `y=f(x^2)` then `(dy)/(dx)` at `x=1` is:

A

2

B

1

C

-2

D

none of these

Text Solution

Verified by Experts

`y=f(x^(2))`
`"or "(dy)/(dx)=f'(x^(2))2x=2xsqrt(2(x^(2))^(2)-1)`
`"At "=1, (dy)/(dx)=2xx1xxsqrt(2-1)=2`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then find (dy)/(dx) at x=1

f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1 is 2(b)1(c)-2 (d) none of these

Knowledge Check

  • If f^1(x)=sqrt(2x^(2)-1) and y=f(x^2) then dy/dx at x = 1 is

    A
    2
    B
    1
    C
    -2
    D
    -1
  • Similar Questions

    Explore conceptually related problems

    If f'(x)=sqrt(2x^2-1) and y=f(x^2) then what is dy/dx at x = 1 ?

    If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

    If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

    If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2) , then find (dy)/(dx) at x=1 .

    Let f'(x)=sin(x^(2)) and y=f(x^(2)+1) then (dy)/(dx) at x=1 is

    If f^(prime)(x)=sqrt(2x^2-1)a n dy=f(x^2),t h e n(dy)/(dx)a tx=1 is 2 (b) 1 (c) -2 (d) none of these

    Let f'(x) = sin(x^2) and y = f(x^2 +1) then dy/dx at x=1 is