Home
Class 12
MATHS
If A a non singular matrix anA^T denotes...

If A a non singular matrix an`A^T` denotes the transpose of A then (A) `|A A^T|!=|A^2|` (B) `|A^T A|!=|A^T|^2` (C) `|A|+|A^T|!=0` (D) `|A|!=|A^T|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a non-singular matrix and A^(T) denotes the tranpose of A, then

If A is a square matrix, then write the matrix a d j(A^T)-(a d j\ A)^T .

Show that A+A^(T) is symmeric matrix, where A^(T) denotes the tranpose of A : A=[(2,3),(5,7)]

Let A be a non-singular matrix.Show that A^(T)A^(-1) is symmetric iff A^(2)=(A^(T))^(2)

Let A be a non-singular matrix.Show that A^(T)A^(-1) is symmetric if A^(2)=(A^(T))^(2)

If "AA"^T=I where A^T is transpose of matrix A then, 1/2A[(A+A^T)^2+(A-A^T)^2]=?

Let A be a non singular,symmentric matrix of order three such that A=adj(A+A^(T)) then.

If A=[[4,1],[5,8]] , show that A+A^T is symmetric matrix, where A^T denotes the transpose of matrix A

Let A and B be two 2times2 non singular skew symmetric matrices such thatAB=BA. If P^(T) ,denotes transpose of P then (B^(2)A^(2))^(2)((B^(T)A)^(-1))^(2)((BA^(-1))^(T))^(2) is equal to

If A is an 3xx3 non-singular matrix such that A A^T=A^TA and B=A^(-1)A^T," then " B B^T equals