Home
Class 12
MATHS
If A a non singular matrix anA^T denotes...

If A a non singular matrix an`A^T` denotes the transpose of A then (A) `|A A^T|!=|A^2|` (B) `|A^T A|!=|A^T|^2` (C) `|A|+|A^T|!=0` (D) `|A|!=|A^T|`

Answer

Step by step text solution for If A a non singular matrix anA^T denotes the transpose of A then (A) |A A^T|!=|A^2| (B) |A^T A|!=|A^T|^2 (C) |A|+|A^T|!=0 (D) |A|!=|A^T| by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If A is a square matrix, then write the matrix a d j(A^T)-(a d j\ A)^T .

Show that A+A^(T) is symmeric matrix, where A^(T) denotes the tranpose of A : A=[(2,3),(5,7)]

Knowledge Check

  • If a non-singular matrix and A^(T) denotes the tranpose of A, then

    A
    `|A|ne |A^(T)|`
    B
    `|A.A^(T)|=|A\|^(2)`
    C
    `|A^(T).A|=|A^(T)|^(2)`
    D
    `|A|=|A|^(T)ne0`
  • If "AA"^T=I where A^T is transpose of matrix A then, 1/2A[(A+A^T)^2+(A-A^T)^2]=?

    A
    `A^2`
    B
    `A^3+1`
    C
    `A^2+1`
    D
    `A^3+A^T`
  • If A is an 3xx3 non-singular matrix such that A A^T=A^TA and B=A^(-1)A^T," then " B B^T equals

    A
    `B^(-1)`
    B
    `(B^(-1))^T`
    C
    `I+B`
    D
    `{:[(2015,0),(1,2015)]:}`
  • Similar Questions

    Explore conceptually related problems

    Let A be a non-singular matrix.Show that A^(T)A^(-1) is symmetric iff A^(2)=(A^(T))^(2)

    Let A be a non-singular matrix.Show that A^(T)A^(-1) is symmetric if A^(2)=(A^(T))^(2)

    Let A be a non singular,symmentric matrix of order three such that A=adj(A+A^(T)) then.

    If A=[[4,1],[5,8]] , show that A+A^T is symmetric matrix, where A^T denotes the transpose of matrix A

    Let A and B be two 2times2 non singular skew symmetric matrices such thatAB=BA. If P^(T) ,denotes transpose of P then (B^(2)A^(2))^(2)((B^(T)A)^(-1))^(2)((BA^(-1))^(T))^(2) is equal to