Home
Class 12
MATHS
The value of int0^(log5) (e^xsqrt(e^x-1)...

The value of `int_0^(log5) (e^xsqrt(e^x-1))/(e^x+3)dx` is (A) `3+2pi` (B) `4-pi` (C) `2+pi` (D) none of these

Answer

Step by step text solution for The value of int_0^(log5) (e^xsqrt(e^x-1))/(e^x+3)dx is (A) 3+2pi (B) 4-pi (C) 2+pi (D) none of these by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

Knowledge Check

  • The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

    A
    `3+2pi`
    B
    `4-pi`
    C
    `2+pi`
    D
    none of these
  • The value of the integral int_0^("log" 5) (e^x sqrt(e^x - 1))/(e^x + 3) dx is

    A
    `3 + 2pi`
    B
    `4 - pi`
    C
    `2 + pi`
    D
    none
  • The value of int_0^(2pi) (dx)/(e^(sinx)+1) is

    A
    `pi`
    B
    0
    C
    `2 pi`
    D
    `pi/2`
  • Similar Questions

    Explore conceptually related problems

    int_1^(e^(17))(pi"sin"(pi(log)_e x))/x dx is equal to (A) 2 (B) -2 (C) 2//pi (D) none of these

    int_0^pi dx/(1+10^(cosx))+int_(-1)^1 log((2-x)/(2+x))dx= (A) pi/2 (B) -pi (C) 0 (D) none of these

    The value of int_(pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

    The value of int_0^(2pi)e^xsin(pi/4+x/2)dx is

    The value of int_(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is