Home
Class 12
MATHS
The value of int0^(log5) (e^xsqrt(e^x-1)...

The value of `int_0^(log5) (e^xsqrt(e^x-1))/(e^x+3)dx` is (A) `3+2pi` (B) `4-pi` (C) `2+pi` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

int_1^(e^(17))(pi"sin"(pi(log)_e x))/x dx is equal to (A) 2 (B) -2 (C) 2//pi (D) none of these

The value of int_(pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

int_0^pi dx/(1+10^(cosx))+int_(-1)^1 log((2-x)/(2+x))dx= (A) pi/2 (B) -pi (C) 0 (D) none of these