Home
Class 12
MATHS
The integral int (sec^2x)/(secx+tanx)^(9...

The integral `int (sec^2x)/(secx+tanx)^(9/2)dx` equals to (for some arbitrary constant `K`) (A) `-1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K` (B) `1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K` (C) `-1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K` (D) `1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K`

Answer

Step by step text solution for The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int((secx)/(secx-tanx))dx equals

int (sec^2x)/((tanx+1)(tanx+2)) dx

Knowledge Check

  • The integral int(sec^(2)x)/((secx+tanx)^(9//2))dx equals (for some arbitrary constant K)

    A
    `-(1)/((secx+tanx)^(11//2)){1/11-1/7(secx+tanx)^(2)}+K`
    B
    `(1)/((secx+tanx)^(11//2)){1/11-1/7(secx+tanx)^(2)}+K`
    C
    `-(1)/((secx+tanx)^(11//2)){1/11+1/7(secx+tanx)^(2)}+K`
    D
    `(1)/((secx+tanx)^(11//2)){1/11+1/7(secx+tanx)^(2)}+K`
  • The integral int(sec^2x)/((secx+tanx)^(9//2))dx equals for some arbitrary constant k

    A
    `(-1)/((sec x + tan x)^(11//2)){1/11-1/7(sec x+tanx)^2]+k`
    B
    `(1)/((sec x + tan x)^(11//2)){1/11-1/7(sec x+tanx)^2]+k`
    C
    `(-1)/((sec x + tan x)^(11//2)){1/11+1/7(sec x+tanx)^2]+k`
    D
    `(1)/((sec x + tan x)^(11//2)){1/11+1/7(sec x+tanx)^2]+k`
  • int(secx+tanx)^(2)dx=

    A
    `x+secx+tanx`
    B
    `2(secx+tanx)-x`
    C
    `2(secx-tanx)+x`
    D
    `2(secx-tanx)+x`
  • Similar Questions

    Explore conceptually related problems

    The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

    (secx-1)(secx+1)

    tan^(-1)(secx+tanx)

    int(1)/(a secx+b tanx)dx=

    int sec x log(secx+tanx)dx=