Home
Class 12
MATHS
The integral int (sec^2x)/(secx+tanx)^(9...

The integral `int (sec^2x)/(secx+tanx)^(9/2)dx` equals to (for some arbitrary constant `K`) (A) `-1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K` (B) `1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K` (C) `-1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K` (D) `1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(secx+tanx)^(2)dx=

int((secx)/(secx-tanx))dx equals

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

(secx-1)(secx+1)

tan^(-1)(secx+tanx)

int(1)/(a secx+b tanx)dx=

int sec x log(secx+tanx)dx=