Home
Class 11
PHYSICS
A particle starts from the origin, goes ...

A particle starts from the origin, goes along the X-axis to the pont (20m, 0) and then returns along the same line to the point (-20m,0). Find the distance and displacement of the particle during the trip.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find both the distance and displacement of the particle during its trip. Let's break it down step by step. ### Step 1: Understand the Motion of the Particle The particle starts at the origin (0, 0) and moves to the point (20 m, 0) along the X-axis. After reaching (20 m, 0), it returns back along the same line to the point (-20 m, 0). ### Step 2: Calculate the Total Distance Traveled 1. **From the Origin to (20 m, 0)**: The particle travels 20 meters. 2. **From (20 m, 0) back to the Origin (0, 0)**: The particle travels another 20 meters. 3. **From the Origin (0, 0) to (-20 m, 0)**: The particle travels 20 meters again. Now, we can sum these distances: - Distance from (0, 0) to (20, 0) = 20 m - Distance from (20, 0) to (0, 0) = 20 m - Distance from (0, 0) to (-20, 0) = 20 m **Total Distance = 20 m + 20 m + 20 m = 60 m** ### Step 3: Calculate the Displacement Displacement is defined as the shortest straight-line distance from the initial position to the final position, along with its direction. 1. **Initial Position**: (0, 0) 2. **Final Position**: (-20, 0) To find the displacement: - The displacement vector can be calculated as: \[ \text{Displacement} = \text{Final Position} - \text{Initial Position} = (-20, 0) - (0, 0) = (-20, 0) \] The magnitude of the displacement is 20 meters, and since the final position is to the left of the origin, the direction is in the negative X direction. ### Final Answers - **Total Distance Traveled**: 60 meters - **Displacement**: 20 meters in the negative X direction

To solve the problem, we need to find both the distance and displacement of the particle during its trip. Let's break it down step by step. ### Step 1: Understand the Motion of the Particle The particle starts at the origin (0, 0) and moves to the point (20 m, 0) along the X-axis. After reaching (20 m, 0), it returns back along the same line to the point (-20 m, 0). ### Step 2: Calculate the Total Distance Traveled 1. **From the Origin to (20 m, 0)**: The particle travels 20 meters. 2. **From (20 m, 0) back to the Origin (0, 0)**: The particle travels another 20 meters. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • REST AND MOTION : KINEMATICS

    HC VERMA|Exercise Objective 2|10 Videos
  • PHYSICS AND MATHEMATICS

    HC VERMA|Exercise Exercises|34 Videos
  • ROTATIONAL MECHANICS

    HC VERMA|Exercise Exercises|86 Videos

Similar Questions

Explore conceptually related problems

A particle starts from the origin,goes along the "X" - axis to the point(20m,0) and then returns along the same line to the point (-20m,0 then the displacement of the particle during the trip in negative direction is....(in m )

(The v - t graph) A particle moving in x-axis is given. Find the distance and displacement of the particle during two seconds from starting.

Knowledge Check

  • A particle starts from the origin, goes along x-axis to the point (10 m, 0) and then returns along. The same line to the point (-10 m, 0). The distance and displacement of the particle during the trip are

    A
    20 m, 0
    B
    30 m, 10 m
    C
    30 m, - 10 m
    D
    20 m, 10 m
  • A particle starts from the origin, goes along X-axis to the point (30m, 0) and then returns along the same line to the point (-30m,0). The displacement and distance of the particle during the trip are

    A
    0, 60m
    B
    60m,30m
    C
    90m, -30m
    D
    `-30m, 90m`
  • Similar Questions

    Explore conceptually related problems

    A force vecF=(4hati+5hatj)N acts on a particle moving in XY plane. Starting from origin, the particle first goes along x-axis to the point (5.0) m and then parallel to the Y-axis to the point (5,4 m. The total work done by the force on the particle is

    A particle start origin moves towares north with 50m then move towards east with 40m and finaly move towards south with 20m. Find distance and displacement.

    A particle starts from the origin and moves along a stright line If the velocity of the particle at time t seconds 10t cm/s then find the distance traversed during fist seconds after the start.

    A particle is moving along the x-axis such that s=6t-t^(2) , where s in meters and t is in second. Find the displacement and distance traveled by the particle during time interval t=0 to t=5 s .

    A particle starts at the origin and moves along the x-axis in such a way that its velocity at the point (x,0) is given by the formula (dx)/(dt)=cos^(2)pi x. Then the particle never reaches the point on

    Three particles start from the origin at the same time, one with velocity u_1 along the x-axis, the second with velocity u_2 along the y-axis . Find the velocity of the third particles, along the x=y line so that the three particles may always lie on the same straight line.