Home
Class 12
MATHS
If A=[(a,b),(c,d)], then adj(adjA) is eq...

If `A=[(a,b),(c,d)]`, then `adj(adjA)` is equal to

A

`A`

B

`A'`

C

`adjA`

D

`-A`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \text{adj}(\text{adj} A) \) for the matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), we will follow these steps: ### Step 1: Find the adjoint of matrix \( A \) The adjoint of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] ### Step 2: Find the adjoint of \( \text{adj}(A) \) Now we need to find the adjoint of the adjoint matrix we just calculated: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Using the same formula for the adjoint, we have: \[ \text{adj}(\text{adj}(A)) = \begin{pmatrix} a & -(-b) \\ -(-c) & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ### Step 3: Conclusion Thus, we find that: \[ \text{adj}(\text{adj}(A)) = A \] ### Final Answer Therefore, \( \text{adj}(\text{adj} A) = A \). ---

To find \( \text{adj}(\text{adj} A) \) for the matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), we will follow these steps: ### Step 1: Find the adjoint of matrix \( A \) The adjoint of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[a,b],[c,d]] then adj adj(A)

If A={:[(1,2),(3,4)]:}," then: " adj(adjA)=

Knowledge Check

  • If {:S=[(a,b),(c,d)]:} , then adj A is equal to

    A
    `{:[(-d,-b),(-c,a)]:}`
    B
    `{:[(d,-b),(-c,a)]:}`
    C
    `{:[(d,b),(c,a)]:}`
    D
    `{:[(d,c),(b,a)]:}`
  • If A is a square matrix of order nxxn , then adj(adjA) is equal to

    A
    `|A|^nA`
    B
    `|A|^(n-1)A`
    C
    `|A|^(n-2)A`
    D
    `|A|^(n-3)A`
  • Similar Questions

    Explore conceptually related problems

    If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det[adj(adjA)] is equal to

    If A={:[(4,2),(5,3)]:}" then :"|adj(adjA)|=

    If A=[(a;b);(c;d)]; find adjA

    If A is a square matrix such that A(adjA)=[(4,0,0),(0,4,0),(0,0,4)], then =(|adj(adjA)|)/(2|adjA|) is equal to

    " If "A" is a square matrix such that "A(adjA)=[[4,0,0],[0,4,0],[0,0,4]]" ,then det "(adj A)" is equal to "

    If A=[{:(3,1),(2,-3):}] , then find |adj.A| .