Home
Class 12
MATHS
The inverse matrix of A=[(0,1,2),(1,2,3)...

The inverse matrix of `A=[(0,1,2),(1,2,3),(3,1,1)]` is

A

`[(1/2,-1/2,1/2),(-4,3,-1),(5/2,-3/2,1/2)]`

B

`[(1/2,-4,5/4),(1,-6,3),(1,2,-1)]`

C

`1/2[(1,2,3),(3,2,1),(4,2,3)]`

D

`1/2[(1,-1,-1),(-8,6,-2),(5,-3,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 0, b = 1, c = 2 \) - \( d = 1, e = 2, f = 3 \) - \( g = 3, h = 1, i = 1 \) Substituting these values into the determinant formula: \[ \text{det}(A) = 0(2 \cdot 1 - 3 \cdot 1) - 1(1 \cdot 1 - 3 \cdot 3) + 2(1 \cdot 1 - 2 \cdot 3) \] Calculating each term: 1. \( 0(2 - 3) = 0 \) 2. \( -1(1 - 9) = -1 \cdot (-8) = 8 \) 3. \( 2(1 - 6) = 2 \cdot (-5) = -10 \) Now, combine these results: \[ \text{det}(A) = 0 + 8 - 10 = -2 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of the cofactor matrix. We will calculate the cofactors for each element of \( A \). 1. **Cofactor of \( a_{11} = 0 \)**: \[ C_{11} = \text{det} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = (2 \cdot 1 - 3 \cdot 1) = -1 \] 2. **Cofactor of \( a_{12} = 1 \)**: \[ C_{12} = -\text{det} \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} = - (1 \cdot 1 - 3 \cdot 3) = -(-8) = 8 \] 3. **Cofactor of \( a_{13} = 2 \)**: \[ C_{13} = \text{det} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = (1 \cdot 1 - 2 \cdot 3) = -5 \] 4. **Cofactor of \( a_{21} = 1 \)**: \[ C_{21} = -\text{det} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = -(-5) = 5 \] 5. **Cofactor of \( a_{22} = 2 \)**: \[ C_{22} = \text{det} \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix} = (0 \cdot 1 - 2 \cdot 3) = -6 \] 6. **Cofactor of \( a_{23} = 3 \)**: \[ C_{23} = -\text{det} \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} = -(-3) = 3 \] 7. **Cofactor of \( a_{31} = 3 \)**: \[ C_{31} = \text{det} \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = (1 \cdot 3 - 2 \cdot 2) = -1 \] 8. **Cofactor of \( a_{32} = 1 \)**: \[ C_{32} = -\text{det} \begin{pmatrix} 0 & 2 \\ 1 & 3 \end{pmatrix} = -(0 \cdot 3 - 2 \cdot 1) = 2 \] 9. **Cofactor of \( a_{33} = 1 \)**: \[ C_{33} = \text{det} \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} = (0 \cdot 2 - 1 \cdot 1) = -1 \] Now, we can form the cofactor matrix: \[ C = \begin{pmatrix} -1 & 8 & -5 \\ 5 & -6 & 3 \\ -1 & 2 & -1 \end{pmatrix} \] Now, we take the transpose of the cofactor matrix to get the adjoint: \[ \text{adj}(A) = C^T = \begin{pmatrix} -1 & 5 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we have: \[ A^{-1} = \frac{1}{-2} \cdot \begin{pmatrix} -1 & 5 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{pmatrix} \] Calculating the inverse: \[ A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{5}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \] ### Final Answer The inverse matrix of \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{5}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \] ---

To find the inverse of the matrix \( A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the matrix [{:(-1,1,2),(1,2,3),(3,1,1):}]

The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

Knowledge Check

  • The inverse of A= [(0,1,2),(1,2,3),(3,1,1)] is

    A
    `1/2[-1,1,-1),(8,-6,2),(-5,3,-1)]`
    B
    `1/2[(1,-1,1),(-8,6,-2),(5,-3,1)]`
    C
    `1/2 [(1,1,1),(1,1,1),(1,1,1)]`
    D
    None of these
  • The inverse of the matrix [(1,1,1),(1,0,2),(3,1,1)] is

    A
    `(1)/(4)[(-2,0,2),(5,-1,2),(1,-1,-2)]`
    B
    `(1)/(4)[(-2,0,2),(5,-2,-1),(1,2,-1)]`
    C
    `(1)/(4)[(-2,0,2),(2,5,-1),(-2,-1,1)]`
    D
    `(1)/(4)[(-2,0,2),(5,-1,1),(1,-2,-1)]`
  • The elements in the first row and third column of the inverse of the matrix [(1,2,3),(0,1,2),(0,0,1)] is

    A
    `-2`
    B
    `0`
    C
    `7`
    D
    `1`
  • Similar Questions

    Explore conceptually related problems

    Find the inverse of the matrix [[0,1,21,2,33,1,1]]

    Find the inverse of the matrix : A=[{:(0,1,2),(0,1,1),(1,0,2):}]

    Using elementary row transformations find the inverse of the matrix [{:(3,0,-1),(2,3,0),(0,4,1):}]

    The element is the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is

    The element in the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is