Home
Class 12
MATHS
The inverse matrix of A=[(0,1,2),(1,2,3)...

The inverse matrix of `A=[(0,1,2),(1,2,3),(3,1,1)]` is

A

`[(1/2,-1/2,1/2),(-4,3,-1),(5/2,-3/2,1/2)]`

B

`[(1/2,-4,5/4),(1,-6,3),(1,2,-1)]`

C

`1/2[(1,2,3),(3,2,1),(4,2,3)]`

D

`1/2[(1,-1,-1),(-8,6,-2),(5,-3,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 0, b = 1, c = 2 \) - \( d = 1, e = 2, f = 3 \) - \( g = 3, h = 1, i = 1 \) Substituting these values into the determinant formula: \[ \text{det}(A) = 0(2 \cdot 1 - 3 \cdot 1) - 1(1 \cdot 1 - 3 \cdot 3) + 2(1 \cdot 1 - 2 \cdot 3) \] Calculating each term: 1. \( 0(2 - 3) = 0 \) 2. \( -1(1 - 9) = -1 \cdot (-8) = 8 \) 3. \( 2(1 - 6) = 2 \cdot (-5) = -10 \) Now, combine these results: \[ \text{det}(A) = 0 + 8 - 10 = -2 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of the cofactor matrix. We will calculate the cofactors for each element of \( A \). 1. **Cofactor of \( a_{11} = 0 \)**: \[ C_{11} = \text{det} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = (2 \cdot 1 - 3 \cdot 1) = -1 \] 2. **Cofactor of \( a_{12} = 1 \)**: \[ C_{12} = -\text{det} \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} = - (1 \cdot 1 - 3 \cdot 3) = -(-8) = 8 \] 3. **Cofactor of \( a_{13} = 2 \)**: \[ C_{13} = \text{det} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = (1 \cdot 1 - 2 \cdot 3) = -5 \] 4. **Cofactor of \( a_{21} = 1 \)**: \[ C_{21} = -\text{det} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = -(-5) = 5 \] 5. **Cofactor of \( a_{22} = 2 \)**: \[ C_{22} = \text{det} \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix} = (0 \cdot 1 - 2 \cdot 3) = -6 \] 6. **Cofactor of \( a_{23} = 3 \)**: \[ C_{23} = -\text{det} \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} = -(-3) = 3 \] 7. **Cofactor of \( a_{31} = 3 \)**: \[ C_{31} = \text{det} \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = (1 \cdot 3 - 2 \cdot 2) = -1 \] 8. **Cofactor of \( a_{32} = 1 \)**: \[ C_{32} = -\text{det} \begin{pmatrix} 0 & 2 \\ 1 & 3 \end{pmatrix} = -(0 \cdot 3 - 2 \cdot 1) = 2 \] 9. **Cofactor of \( a_{33} = 1 \)**: \[ C_{33} = \text{det} \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} = (0 \cdot 2 - 1 \cdot 1) = -1 \] Now, we can form the cofactor matrix: \[ C = \begin{pmatrix} -1 & 8 & -5 \\ 5 & -6 & 3 \\ -1 & 2 & -1 \end{pmatrix} \] Now, we take the transpose of the cofactor matrix to get the adjoint: \[ \text{adj}(A) = C^T = \begin{pmatrix} -1 & 5 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we have: \[ A^{-1} = \frac{1}{-2} \cdot \begin{pmatrix} -1 & 5 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{pmatrix} \] Calculating the inverse: \[ A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{5}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \] ### Final Answer The inverse matrix of \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{5}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \] ---

To find the inverse of the matrix \( A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [(1,1,1),(1,0,2),(3,1,1)] is

Find the inverse of the matrix [{:(-1,1,2),(1,2,3),(3,1,1):}]

The elements in the first row and third column of the inverse of the matrix [(1,2,3),(0,1,2),(0,0,1)] is

The element in the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is

The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

Find the inverse of the matrix [[0,1,21,2,33,1,1]]

Find the inverse of the matrix : A=[{:(0,1,2),(0,1,1),(1,0,2):}]

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  2. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  3. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  4. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  5. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  6. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  7. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  8. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  9. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  10. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  11. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  12. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  13. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  14. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  15. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  16. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  17. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  18. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |