Home
Class 12
MATHS
int(dx)/((sinx+cosx)(2cosx+sinx))=...

`int(dx)/((sinx+cosx)(2cosx+sinx))=`

A

`log|sinx+cosx|+c`

B

`log|(tanx+2)/(tanx+1)|+c`

C

`log|(sinx+cosx)/(2cosx-sinx)|+c`

D

`log|(tanx+1)/(tanx+2)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(\sin x + \cos x)(2 \cos x + \sin x)}, \] we will follow these steps: ### Step 1: Simplify the Integral We start with the integral: \[ I = \int \frac{dx}{(\sin x + \cos x)(2 \cos x + \sin x)}. \] ### Step 2: Multiply by \(\cos^2 x\) To simplify, we multiply the numerator and the denominator by \(\cos^2 x\): \[ I = \int \frac{\cos^2 x \, dx}{\cos^2 x (\sin x + \cos x)(2 \cos x + \sin x)}. \] This gives us: \[ I = \int \frac{\cos^2 x \, dx}{\cos^2 x \sin x + \cos^2 x \cos x (2 \cos x + \sin x)}. \] ### Step 3: Use the Substitution \(t = \tan x\) Let \(t = \tan x\). Then, we have: \[ dx = \frac{dt}{\cos^2 x}. \] Substituting this into the integral, we get: \[ I = \int \frac{\cos^2 x \cdot \frac{dt}{\cos^2 x}}{(\frac{\sin x}{\cos x} + 1)(2 + \frac{\sin x}{\cos x})} = \int \frac{dt}{(t + 1)(2 + t)}. \] ### Step 4: Partial Fraction Decomposition Now we perform partial fraction decomposition: \[ \frac{1}{(t + 1)(t + 2)} = \frac{A}{t + 1} + \frac{B}{t + 2}. \] Multiplying through by the denominator, we have: \[ 1 = A(t + 2) + B(t + 1). \] ### Step 5: Solve for A and B Expanding and comparing coefficients: \[ 1 = (A + B)t + (2A + B). \] Setting up the equations: 1. \(A + B = 0\) 2. \(2A + B = 1\) From the first equation, \(B = -A\). Substituting into the second equation: \[ 2A - A = 1 \implies A = 1, \quad B = -1. \] ### Step 6: Rewrite the Integral Now we can rewrite the integral: \[ I = \int \left( \frac{1}{t + 1} - \frac{1}{t + 2} \right) dt. \] ### Step 7: Integrate Integrating each term separately: \[ I = \ln |t + 1| - \ln |t + 2| + C = \ln \left| \frac{t + 1}{t + 2} \right| + C. \] ### Step 8: Substitute Back Substituting back \(t = \tan x\): \[ I = \ln \left| \frac{\tan x + 1}{\tan x + 2} \right| + C. \] ### Final Answer Thus, the final result is: \[ I = \ln \left| \frac{\tan x + 1}{\tan x + 2} \right| + C. \]

To solve the integral \[ I = \int \frac{dx}{(\sin x + \cos x)(2 \cos x + \sin x)}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOLVED PAPER 2018

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos
  • STRAIGHT LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2(MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

int(dx)/((sinx-2cosx)(2sinx+cosx))

int(1)/(sinx-cosx)dx=

Knowledge Check

  • int(dx)/(1-sinx+cosx)=

    A
    `log|(tan((x)/(2))+1)|+c`
    B
    `-log|(tan((x)/(2))+1)|+c`
    C
    `log|(tan((x)/(2))-1)|+c`
    D
    `-log|(tan((x)/(2))-1)|+c`
  • int(dx)/(1+2sinx+cosx)

    A
    `log(2sinx+cosx)=`
    B
    `log(2+2tan""(x)/(2))+c`
    C
    `(1)/(2)log(1-2tan""(x)/(2))+c`
    D
    `(1)/(2)log(1+2tan""(x)/(2))+c`
  • int(dx)/(2sinx-cosx+3)=

    A
    `tan^(-1)(tan((x)/(2))+1)+c`
    B
    `(1)/(2)tan^(-1)(tan((x)/(2))+1)+c`
    C
    `tan^(-1)(2tan((x)/(2))+1)+c`
    D
    `2tan^(-1)(tan((x)/(2))+1)+c`
  • Similar Questions

    Explore conceptually related problems

    int(dx)/(3sinx+2cosx+3)=

    int(cos2x)/(cosx-sinx)dx=

    int(cosx)/(sinx+cosx)dx=

    int(sinx)/(sinx-cosx)dx=

    int(secx)/(sinx+cosx)dx=