Home
Class 12
MATHS
Find the volume of the parallelopiped wi...

Find the volume of the parallelopiped with segments AB, AC and AD as concurrent edges, where : (1) `A-=(3,7,4),B-=(5,-2,3),C-=(-4,5,6)andD-=(1,2,3)` (2) the position vectors of A,B,C,D are `hat(i)+hat(j)+hat(k),2hat(i)-hat(j),3hat(i)-2hat(j)-2hat(k)and3hat(i)+3hat(j)+4hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped formed by the vectors AB, AC, and AD, we will follow these steps: ### Step 1: Find the vectors AB, AC, and AD Given the points: - A = (3, 7, 4) - B = (5, -2, 3) - C = (-4, 5, 6) - D = (1, 2, 3) 1. **Calculate vector AB:** \[ \vec{AB} = \vec{B} - \vec{A} = (5 - 3, -2 - 7, 3 - 4) = (2, -9, -1) \] 2. **Calculate vector AC:** \[ \vec{AC} = \vec{C} - \vec{A} = (-4 - 3, 5 - 7, 6 - 4) = (-7, -2, 2) \] 3. **Calculate vector AD:** \[ \vec{AD} = \vec{D} - \vec{A} = (1 - 3, 2 - 7, 3 - 4) = (-2, -5, -1) \] ### Step 2: Set up the scalar triple product The volume \( V \) of the parallelepiped can be calculated using the scalar triple product: \[ V = |\vec{AB} \cdot (\vec{AC} \times \vec{AD})| \] ### Step 3: Calculate the cross product \( \vec{AC} \times \vec{AD} \) Using the determinant to find the cross product: \[ \vec{AC} \times \vec{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -7 & -2 & 2 \\ -2 & -5 & -1 \end{vmatrix} \] Calculating the determinant: \[ \vec{AC} \times \vec{AD} = \hat{i} \begin{vmatrix} -2 & 2 \\ -5 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} -7 & 2 \\ -2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} -7 & -2 \\ -2 & -5 \end{vmatrix} \] Calculating each of the determinants: 1. For \( \hat{i} \): \[ (-2)(-1) - (2)(-5) = 2 + 10 = 12 \] 2. For \( \hat{j} \): \[ (-7)(-1) - (2)(-2) = 7 + 4 = 11 \] (Note the sign change for \( \hat{j} \) gives us -11) 3. For \( \hat{k} \): \[ (-7)(-5) - (-2)(-2) = 35 - 4 = 31 \] Thus, the cross product is: \[ \vec{AC} \times \vec{AD} = 12\hat{i} + 11\hat{j} + 31\hat{k} \] ### Step 4: Calculate the dot product \( \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \) Now, we compute: \[ \vec{AB} \cdot (\vec{AC} \times \vec{AD}) = (2, -9, -1) \cdot (12, -11, 31) \] Calculating the dot product: \[ = 2 \cdot 12 + (-9) \cdot (-11) + (-1) \cdot 31 = 24 + 99 - 31 = 92 \] ### Step 5: Calculate the volume The volume \( V \) is: \[ V = |\vec{AB} \cdot (\vec{AC} \times \vec{AD})| = |92| = 92 \text{ cubic units} \] ### Final Answer: The volume of the parallelepiped is **92 cubic units**. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the following vectors are coplanar : 3hat(i)-2hat(j)+4hat(k), 6hat(i)+3hat(j)+2hat(k), 5hat(i)+7hat(j)+3hat(k) and 2hat(i)+2hat(j)+5hat(k) .

Knowledge Check

  • Find the volume of the parallelepiped with segments AB, AC and AD as concurrent edges, where the position vectors of A, B, C, D are hat(i)+hat(j)+hat(k),2hat(i)-hat(j)+3hat(k),3hat(i)-2hat(j)-2hat(k)and3hat(i)+3hat(j)+4hat(k) respectively.

    A
    27 cu. units
    B
    41 cu. units
    C
    10 cu. units
    D
    52 cu. units
  • If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3hat(k)]]=0 then a=

    A
    `4`
    B
    `3`
    C
    `6`
    D
    `2`
  • The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

    A
    parallel
    B
    perpendicular
    C
    anti-parallel
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

    Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) on 2hat(i)+6hat(j)+3hat(k)

    show that the points whose position vectors are (-2hat(i) +3hat(j) +5hat(k)) (hat(i)+2hat(j)+3hat(k)) " and " (7hat(i) -hat(k)) are collinear.

    If the vectors 2hat(i)-hat(j)+hat(k),hat(i)+2hat(j)-3hat(k),3hat(i)+ahat(j)+5hat(k) are coplanar, then a =

    Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :