Home
Class 12
MATHS
Discuss the continuity of the functions ...

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : `{:(f(x)=(x^(2)-4x)/(sqrt(x^(2)+9)-5)",","for" x ne4),(=3",", "for"x=4):}}at x =4.`

Text Solution

Verified by Experts

The correct Answer is:
`f(4)=240`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • BINOMIAL DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : {:(f(x)=(e^(5x)-e^(2x))/(sin3x)",", "for" x ne0),(=1",", "for" x=0):}}at x=0.

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : {:(f(x)=((e^(2x)-1)tanx)/(x sinx)",","for" x ne0),(=e^(2)",","for"x=0):}}at x=0.

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : {:(f(x)=(1-cos 3x)/(x tan x)",","for" x ne0),(=9",","for" x=0):}}at x=0.

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : {:(f(x)=((3^(sinx)-1)^(2))/(x log(1+x))",","for" x ne0),(=2log3",", "for" x=0):}}at x=0.

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : {:(f(x)=(logx-log7)/(x-7)",","for" x ne7),(=7",","for" x=7):}}at x=7.

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : {:(f(x) =(log(2+x)-log(2-x))/(tanx)",","for" xne0),(=1",","for" x=0):}}at x=0.

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : {:(f(x)=(1+cos 2x)^(4sec2x)",","for"x nepi/4),(=e^(4)",","for" x=pi/4):}}at x=pi/4*

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : {:(f(x)sin x-cosx",", "for"x ne0),(=-1",","for"x=0):}}at x=0.

Discuss the continuity of the functions at the points shown against them . If a function is discontinuous , determine whether the discontinuity is removable . In this case , redefine the function , so that it becomes continuous : {:(F(x)=(4^(x)-e^(x))/(6^(x)-1)" , for "x ne0),(=log((2)/(3))" , for "x =0):}} at x =0 .

Discuss the continuity of the functions at the points shown against them . If a function is discontinuous , determine whether the discontinuity is removable . In this case , redefine the function , so that it becomes continuous : {:(f(x)=xsin(1/x)" , for "x ne0),(=0" , for "x=0):}} at x=0