Home
Class 12
MATHS
x=sin^(-1)((2theta)/(1+theta^(2))),y=sec...

`x=sin^(-1)((2theta)/(1+theta^(2))),y=sec^(-1)(sqrt(1+theta^(2)))`

Text Solution

Verified by Experts

`(1)/(2)`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

(1-sin^(2)theta)sec^(2)theta=1

(8) (1+sin theta)/(1-sin theta)=(sec theta+tan theta)^(2)

Prove each of the following identities : (i) (sec theta -1)/(sec theta +1) =(sin^(2) theta)/((1+ cos theta)^(2) ) (ii) (sec theta - tan theta)/(sec theta + tan theta) = (cos^(2) theta)/((1+ sintheta)^(2))

theta_1 and theta_2 are the inclination of lines L_1a n dL_2 with the x-axis. If L_1a n dL_2 pass through P(x_1,y_1) , then the equation of one of the angle bisector of these lines is (a) (x-x_1)/(cos((theta_1-theta_2)/2))=(y-y_1)/(sin((theta_1-theta_2)/2)) (b)(x-x_1)/(-sin((theta_1-theta_2)/2))=(y-y_1)/(cos((theta_1-theta_2)/2)) (c)(x-x_1)/(sin((theta_1-theta_2)/2))=(y-y_1)/(cos((theta_1-theta_2)/2)) (d)(x-x_1)/(-sin((theta_1-theta_2)/2))=(y-y_1)/(cos((theta_1-theta_2)/2))

Prove (1)/(1+sin theta)+(1)/(1-sin theta)=2sec^(2)theta

sin^2 theta/(1-cos theta)=(1+sec theta)/sec theta

(sec theta+tan theta)^(2)=(1+sin theta)/(1-sin theta)

A hyperbola having the transverse axis of length 2sin theta is confocal with the ellipse 3x^(2)+4y^(2)=12 .Then its equation is x^(2)csc^(2)theta-y^(2)sec^(2)theta=1x^(2)sec^(2)theta-y^(2)cos ec^(2)theta=1x^(2)sin^(2)theta-y^(2)cos^(2)theta=1x^(2)cos^(2)theta-y^(2)sin^(2)theta=1

(2sin theta tan theta(1-tan theta)+2sin theta sec^(2)theta)/((1+tan theta)^(2))=(2sin theta)/(1+tan theta)

(2sin theta*tan theta(1-tan theta)+2sin theta*sec^(2)theta)/((1+tan theta)^(2))=(2sin theta)/(1+tan theta)