Home
Class 12
MATHS
e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x...

` e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( e^{-x} \frac{dy}{dx} = y(1 + \tan x + \tan^2 x) \), we will follow a systematic approach. ### Step 1: Rewrite the equation We start with the given equation: \[ e^{-x} \frac{dy}{dx} = y(1 + \tan x + \tan^2 x) \] We can rewrite \(1 + \tan^2 x\) as \(\sec^2 x\) (using the identity \(1 + \tan^2 x = \sec^2 x\)). Thus, we can express the equation as: \[ e^{-x} \frac{dy}{dx} = y(\tan x + \sec^2 x) \] ### Step 2: Separate variables Next, we separate the variables \(y\) and \(x\): \[ \frac{dy}{y} = \left(\tan x + \sec^2 x\right)e^x dx \] ### Step 3: Integrate both sides Now we integrate both sides: \[ \int \frac{dy}{y} = \int \left(\tan x + \sec^2 x\right)e^x dx \] The left side integrates to: \[ \ln |y| + C_1 \] For the right side, we can use integration by parts or recognize that: \[ \int e^x \tan x \, dx + \int e^x \sec^2 x \, dx \] The second integral is straightforward: \[ \int e^x \sec^2 x \, dx = e^x \tan x + C_2 \] The first integral can be solved using integration by parts, but for simplicity, we will denote the entire right side as \(I\). ### Step 4: Combine results Thus, we have: \[ \ln |y| = I + C \] where \(C\) is a constant that combines \(C_1\) and \(C_2\). ### Step 5: Exponentiate to solve for \(y\) Exponentiating both sides gives: \[ y = e^{I + C} = e^C e^I \] Let \(k = e^C\), then: \[ y = k e^I \] ### Step 6: Final solution The final solution can be expressed in terms of the integral we computed: \[ y = k e^{\int (\tan x + \sec^2 x)e^x dx} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (4)|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (5)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)=1+x tan(y-x)

Solve (1 + x ^(2)) (dy )/(dx) + y = e ^( tan ^(-1) x ) .

Knowledge Check

  • The solution of differential equation (1+x^(2)) (dy)/(dx) + y = e^(tan^(-1)x)

    A
    `ye^(tan^(-1)x) = (1)/(2)e^(2tan^(-1)x) + C`
    B
    `y = (1)/(2)e^(2 tan^(-1)x) + C`
    C
    `ye^(tan^(-1)x) = 2e^(2 tan^(-1)x) + C`
    D
    `y. tan^(-1) x = (1)/(2) e^(2 tan^(-1)x) + C`
  • Similar Questions

    Explore conceptually related problems

    Solve the differential equation (dy)/(dx) + y tan x = 2x + x ^(2)tanx

    Find the general solution of the differential equation : (tan^(2)x+2tan x + 5)(dy)/(dx)=2(1+tanx)sec^(2)x .

    (x (dy) / (dx) -y) tan ^ (- 1) ((y) / (x)) = x

    Find (dy)/(dx) when : y=(x+tanx)/(tanx)

    Find (dy)/(dx) , when: y=(tanx)^(1//x)

    Find (dy)/(dx) , when If y = sqrt((sec x - tanx)/(sec x + tanx)) , show that (dy)/(dx) = sec x (tanx - sec x) .

    Solve ((dy)/(dx))-y tan x=e^(x)