Home
Class 12
MATHS
The p.d.f of a continuous random vari...

The p.d.f of a continuous random variable X is `f(x) = (x^(2))/(3), - 1 lt x lt 2` 0 = otherwise Then the c.d.f of X is

A

`(x^(3))/(9) +(1)/(9)`

B

`(x^(3))/(9) - (1)/(9)`

C

`(x^(2))/(4) +(1)/(4)`

D

`(1)/(9x^(3))+(1)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cumulative distribution function (c.d.f) of the continuous random variable \( X \) with the given probability density function (p.d.f) \( f(x) = \frac{x^2}{3} \) for \( -1 < x < 2 \) and \( f(x) = 0 \) otherwise, we will follow these steps: ### Step 1: Understand the Definition of Cumulative Distribution Function The cumulative distribution function \( F(x) \) is defined as: \[ F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t) \, dt \] ### Step 2: Identify the Intervals Since \( f(x) = 0 \) for \( x \leq -1 \) and \( x \geq 2 \), we can break the calculation of \( F(x) \) into different intervals: - For \( x < -1 \): \( F(x) = 0 \) - For \( -1 \leq x < 2 \): \( F(x) = \int_{-1}^{x} f(t) \, dt \) - For \( x \geq 2 \): \( F(x) = 1 \) (since the total area under the p.d.f must equal 1) ### Step 3: Calculate the CDF for the Interval \(-1 \leq x < 2\) We will now calculate \( F(x) \) for the interval \( -1 \leq x < 2 \): \[ F(x) = \int_{-1}^{x} f(t) \, dt = \int_{-1}^{x} \frac{t^2}{3} \, dt \] ### Step 4: Perform the Integration Now we need to compute the integral: \[ \int \frac{t^2}{3} \, dt = \frac{1}{3} \cdot \frac{t^3}{3} = \frac{t^3}{9} \] Now, we will evaluate this from \(-1\) to \(x\): \[ F(x) = \left[ \frac{t^3}{9} \right]_{-1}^{x} = \frac{x^3}{9} - \frac{(-1)^3}{9} \] \[ F(x) = \frac{x^3}{9} + \frac{1}{9} = \frac{x^3 + 1}{9} \] ### Step 5: Combine All Parts to Form the Complete CDF Now we can summarize the c.d.f \( F(x) \): \[ F(x) = \begin{cases} 0 & \text{for } x < -1 \\ \frac{x^3 + 1}{9} & \text{for } -1 \leq x < 2 \\ 1 & \text{for } x \geq 2 \end{cases} \] ### Final Answer Thus, the cumulative distribution function \( F(x) \) is: \[ F(x) = \begin{cases} 0 & \text{for } x < -1 \\ \frac{x^3 + 1}{9} & \text{for } -1 \leq x < 2 \\ 1 & \text{for } x \geq 2 \end{cases} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLE FOR PRACTICE|20 Videos
  • PLANE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise BINOMIAL DISTRIBUTION|20 Videos

Similar Questions

Explore conceptually related problems

The following is the p.d.f of continuous random variable X. f(x) = (x)/(8), 0 lt x lt 4 =0 , otherwise. Find the expression for c.d.f of X

Given the p.d.f of a continous r.v.X was f(x) = (x^(2))/(3), - 1 lt x lt2 =0, Otherwise Determine the c.d.f of X and hence find . P(X lt 1), P(X le - 2), P(X gt0),P(1le X le 2)

Knowledge Check

  • If the p.d.f of a continuous random variable X is f(x)=kx^(2)(1-x), 0 lt x lt 1 = 0 otherwise Then the value of k is

    A
    8
    B
    10
    C
    12
    D
    16
  • c.d.f F(x) of a continous random variable X is defined as .

    A
    `F(x) = underset(-oo)overset(x)intf(x) dx`
    B
    `F(x) = underset(1)overset(x)intf(x)dx`
    C
    `F(x) = underset(-oo)overset(oo)int f(x)dx`
    D
    `F(x) = P[X = x]`
  • The p.d.f. of a continuous random variable X is f(x) = K/(sqrt(x)), 0 lt x lt 4 = 0 , otherwise Then P(X ge1) is equal to

    A
    0.2
    B
    0.3
    C
    0.4
    D
    0.5
  • Similar Questions

    Explore conceptually related problems

    The p. d. f. of a continuous r. v. Xis f(x) = {:((3x^2)/8 , 0 lt x lt 2),(0, "otherwise"):} Determine the c.d.f of X and hence find (i) P(X lt 1), (ii) P(1 lt X lt 2) .

    The p.d.f of a continous random variable X is f(x)=x/8, 0 lt x lt 4 =0 , otherwise Then the value of P(X gt 3) is

    The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(X gt0) =

    The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(1 lt X lt2) =

    The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(X le -2) =