Home
Class 12
PHYSICS
The conductivity of a pure semiconductor...

The conductivity of a pure semiconductor is roughly proportional to `T^3/2 e^(-Delta E//2kT)where `(Delta)E`is the band gap.The band gap for germanium is 0.74eV at 4K and 0.67eV at 300K.By what factor does the conductivity of pure germanium increase as the temperature is raised form 4K to 300K?

Text Solution

Verified by Experts

Here `delta = T(3//2) e^(-DeltaE//2KT)`
`:. (sigma_2)/(sigma_1) = (T_2/T_1)^(3//2) (e^(-DeltaE_(2)//2KT_(2))/(e^(-DeltaE_(1)//2KT_1))`
`= (300/4)^(3//2) (e^(-0.67//(2 xx 8.62 xx 10^(-5) xx 300))/(e^(-0.74//(2 xx 8.62 xx 10^(-5) xx 4)`
`= 10^(463)`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The work function of a thermionic emitter is 4.5 eV . By what factor does the thermionic current incease if its temperature is raised from 1500 K to 2000 K ?

The energy gap in germanium is 0.75eV . Compare the intrinsic conductivities of germanium at 300K and 330K . Take k_(B)=8.6xx10^(-5)eVK^(-1)

Knowledge Check

  • The activation energy for a reaction that doubles the rate when the temperature is raised from 300 K to 310 K is (log 2 = 0.3)

    A
    `50.6 kJ mol^(-1)`
    B
    `75.45 kJ mol^(-1)`
    C
    `45.5 kJ mol^(-1)`
    D
    `53.4 kJ mol^(-1)`
  • Assume that the number of hole-electron pair in an intrinsic semiconductor is proportional to e^(- Delta E//2KT) . Here Delta E = energy gap and k=8.62 xx 10^(-5) eV//"kelvin" The energy gap for silicon is 1.1 eV . The ratio of electron hole pairs at 300 K and 400 K is :

    A
    `e^(-5.31)`
    B
    `e^(-5)`
    C
    `e`
    D
    `e^(2)`
  • The electrical conductivity of a semiconductor increases wen electromagnetic radiations of wavelength shorter than 2480 nm is incident on it. The band gap (in eV) for the semiconductor is [ hc = 1242 e V n m ]

    A
    `0.7eV`
    B
    `0.5eV`
    C
    `0.6eV`
    D
    `1.1eV`
  • Similar Questions

    Explore conceptually related problems

    The conductivity of an intrinsic semiconductor depends of tempareture as (sigma)=(sigma_0)e^(-Delta E//2kT), where (sigma_0) is a constant.find the temperature at which the conductivity of an imtrinsic germanium semoconductor will be double of its value at T=300 K .Assume that the gap for germanium is 0.650 eV and remains constant as the temperature os increased.

    The band gap in germanium is (Delta E=0.68eV.) .Assuming that the number of hole-electron pairs is proportional to e^(-Delta E//2kT),find the percentage increase in the number of charge carries in pure germanium as the temperature is increased form 300K to 320K.

    Let (Delta)E denote the energy gap between the valence band and the conduction band.The population of conduction electrons (and of the holes)is roughly proportional to e^(-Delta E//2kT). Find the ratio of the concentration of conduction electrons in diamond to that in silicon at room tempareture 300K. (Delta E) for silicon is 1.1 ev and for diamond is 6.0eV.How many conduction electrons are likely to be in one cubic meter of diamond ?

    Find the minimum energy of electron-hole pair formation in an impurity-free semiconductor whose electric conductor increase eta=5.0 times when the temperature increases from T_(1)= 300K t o T_(2)= 400K

    The forbidden energy gap of a germanium semiconductor is 0.75 eV. The minimum thermal energy of electrons reaching the conduction band from the valence band should be -